
On the E�ectiveness of Type-based Control Flow Integrity
Reza Mirzazade farkhani

Northeastern University
reza699@ccs.neu.edu

Saman Jafari
Northeastern University
jafari1149@ccs.neu.edu

Sajjad Arshad
Northeastern University
arshad@ccs.neu.edu

William Robertson
Northeastern University

wkr@ccs.neu.edu

Engin Kirda
Northeastern University

ek@ccs.neu.edu

Hamed Okhravi
MIT Lincoln Laboratory
hamed.okhravi@ll.mit.edu

ABSTRACT
Control� ow integrity (CFI) has received signi�cant attention in
the community to combat control hijacking attacks in the presence
of memory corruption vulnerabilities. The challenges in creating a
practical CFI has resulted in the development of a new type of CFI
based on runtime type checking (RTC). RTC-based CFI has been
implemented in a number of recent practical e�orts such as GRSe-
curity Reuse Attack Protector (RAP) and LLVM-CFI. While there
has been a number of previous e�orts that studied the strengths
and limitations of other types of CFI techniques, little has been
done to evaluate the RTC-based CFI. In this work, we study the
e�ectiveness of RTC from the security and practicality aspects.
From the security perspective, we observe that type collisions are
abundant in su�ciently large code bases but exploiting them to
build a functional attack is not straightforward. Then we show how
an attacker can successfully bypass RTC techniques using a variant
of ROP attacks that respect type checking (called TROP) and also
built two proof-of-concept exploits, one against Nginx web server
and the other against Exim mail server. We also discuss practical
challenges of implementing RTC. Our� ndings suggest that while
RTC is more practical for applying CFI to large code bases, its policy
is not strong enough when facing a motivated attacker.

ACM Reference Format:
Reza Mirzazade farkhani, Saman Jafari, Sajjad Arshad, William Robertson,
Engin Kirda, and Hamed Okhravi. 2018. On the E�ectiveness of Type-based
Control Flow Integrity. In 2018 Annual Computer Security Applications Con-
ference (ACSAC ’18), December 3–7, 2018, San Juan, PR, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3274694.3274739

DISTRIBUTION STATEMENTA. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Assistant Secretary of Defense
for Research and Engineering under Air Force Contract No. FA8702-15-D-0001.
Any opinions,� ndings, conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily re�ect the views of the Assistant
Secretary of Defense for Research and Engineering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the� rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’18, December 3–7, 2018, San Juan, PR, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6569-7/18/12. . . $15.00
https://doi.org/10.1145/3274694.3274739

1 INTRODUCTION
Memory corruption attacks continue to pose a major threat to
computer systems. Over the past decades, the sophistication of
such attacks has risen from simple code injection [28] to various
forms of code-reuse attacks (a.k.a. return-oriented programming –
ROP) [4, 8, 37, 38] as a result of the widespread adoption of defenses
such asW � X [29].

Preventing memory corruption attacks in legacy, memory unsafe
languages such as C/C++ is challenging. Complete memory safety
techniques that guarantee spatial and temporal pointer safety often
incur large runtime overhead [24, 25]. As a result, lighter-weight
defenses have been proposed that enforce weaker policies, but incur
lower performance overhead. One class of such defenses random-
izes or diversi�es code at compile-time, load-time, or runtime [18]
to create non-determinism for an attacker. However, code random-
ization and diversi�cation techniques are shown to be vulnerable
to various forms of direct [40], indirect [11], and side-channel [36]
information leakage attacks. Even leakage-resilient variants of such
defenses are shown to be vulnerable to code inference [39] and
indirect pro�ling attacks [33].

A class of memory defenses that aims to provide a balance be-
tween security and performance is Control Flow Integrity (CFI) [6].
CFI aims to prevent control hijacking memory corruption attacks
by checking the control� ow transfers at runtime. While the policy
enforced by CFI does not prevent non-control hijacking attacks
(e.g., data-only attacks [17]), the relatively low overhead incurred
by CFI and its resilience to information leakage attacks make it one
of the desirable classes of defenses. CFI has even been called “one of
the most promising ways to stop advanced code-reuse attacks” [49].

One of the distinguishing factors among various CFI techniques
is how the control� ow graph (CFG) is generated. Three major
classes of CFI defenses are: 1) those that generate the CFG statically
using points-to analysis [1, 2, 5, 26, 50], 2) those that generate the
CFG dynamically at runtime [13, 27, 30], and 3) those that generate
the CFG based on type information [21, 23, 44, 46, 49]. We call the
third class Runtime Type Checking (RTC)-based CFI (or simply
RTC in the rest of this paper). Since points-to analysis is often very
imprecise, di�cult to modularize, and hard when only the binary is
available, many recent CFI techniques are designed based on RTC
[21, 23, 44, 46, 49].

In RTC, for forward edge protection, the type of function pointer
and the target are checked at each forward edge control transfer. A
weaker subclass of RTC techniques only checks the arity (argument
count) of forward edge transfers, and not the precise type [47, 49].
For backward edge protection (i.e., return address protection), the

28

https://doi.org/10.1145/3274694.3274739
https://doi.org/10.1145/3274694.3274739
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3274694.3274739&domain=pdf&date_stamp=2018-12-03

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA R. Mirzazade farkhani, S. Jafari, S. Arshad, W. Robertson E. Kirda, H. Okhravi

type of callee is checked during the function epilogue. RAP [46],
TypeArmor [49], Kernel CFI (KCFI) [23], MCFI [44], IFCC [47], and
LLVM-CFI [21] are some of the examples of RTC techniques. While
extensive work has been done on the e�ectiveness of CFI based on
points-to analysis (e.g., [7, 12, 14, 16, 20]), the strength of RTC has
not been studied.

To the best of our knowledge, three implementations of RTC are
available that protect both forward and backward edges with type
checking: KCFI [23], RAP [46], and MCFI [44]. Other approaches
such as IFCC [47], LLVM-CFI [21], and TypeArmor [49] only protect
the forward edge. While an implementation of KCFI is not available,
an open source version of RAP and LLVM-CFI are available. RAP
and LLVM-CFI also provide themost stable implementations of RTC
as they are targeting production environments, and are not research
prototypes (RAP has even been applied to the Linux distribution,
Subgraph OS [41]). In addition, RAP provides a more accurate CFG
than LLVM-CFI because it removes static functions from the target
set, unlike LLVM-CFI. Furthermore, neither RAP nor LLVM-CFI
limit the target set to address-taken functions. For these reasons,
we focus our analysis on RAP in this paper. In addition, we focus
only on C programs because RAP C++ is not free1.

In this paper, we provide the� rst study on the security and
practicality of RTC. From the security perspective, we illustrate that
type collisions exist, and are, in fact, very common in su�ciently
large applications. While, at� rst glance, it may appear that such
collisions should be straightforward to exploit (similar to attacks
that leverage the imprecisions in points-to analysis-based CFI), we
show that practical exploits against RTC face a major challenge: it
is unlikely that a corruptible pointer has the exact collision with a
desirable function for an attack (e.g., a system call). Indeed, we show
that while collisions are abundant, collisions with sensitive targets
such as system calls are, in fact, rare. We use a layered invocation
method against RTC inwhich a sensitive function is called indirectly
through multiple layers of other calls that eventually end in a call
that has a collision with a corruptible function pointer. In other
words, a sensitive function is called from a corruptible pointer
through various layers of other functions. We call the sensitive
function, the function that collides with a corruptible pointer, and
the other layers Execution-Gadget (E�������), Collision-Gadget
(C�������), and Linker-Gadget (L�������), respectively. Since
this form of ROP attack respects the type checking (thus bypassing
RTC), we call it Typed ROP (TROP) .

In order to illustrate the practicality of TROP, we build two
proof-of-concept exploits, one against Nginx and the other against
Exim, that successfully hijack control in the presence of RTC. Our
exploits successfully bypass the open-source version of RAP [46].
Furthermore, we perform an analysis of exploitable conditions in
many popular applications and servers. Our� ndings indicate that
collisions are abundantly found in real-world applications, and that
the gadgets necessary for a TROP attack (i.e., C�������, L�������,
and E�������) are prevalent in popular servers. Our results suggest
that, while RTC techniques complicate successful attacks and are,
in many cases, more practical than points-to analysis-based CFI,

1We tried to obtain the commercial version of RAP, but unfortunately were not able
to do so because, based on our exchanges with the sta� at GRSecurity, procuring the
commercial version actually requires contracting GRSecurity’s security service, and is
not as simple as purchasing a software package for a fee.

on their own, they are not su�cient to prevent control hijacking in
the face of motivated attackers.

In summary, our contributions are as follows:

• We provide a� rst in-depth analysis of the e�ectiveness of
RTC techniques.
• We illustrate a code reuse attack, TROP, that can successfully
bypass precise RTC even in the absence of collisions with
sensitive functions.
• We build two proof-of-concept exploits against Nginx and
Exim to show the practicality of TROP.
• We analyzemany popular applications and servers, and show
that the conditions necessary for a successful attack are
abundantly found in the real-world.
• We discuss the practical challenges of adopting RTC tech-
niques in large programs.

2 BACKGROUND AND PROBLEM
DEFINITION

Lack of memory management in unsafe programming languages,
such as C/C++, has been introducing signi�cant threats since 1988
when the� rst Internet worm exploited a bu�er over�ow vulnera-
bility in Fingerd [35]. As a result, there has been a continuous arms
race between the development of attacks and defenses.

Defenses in the memory corruption domain can be broadly cat-
egorized into enforcement-based and randomization-based tech-
niques. While randomization-based techniques [18] are vulnerable
to various forms of information leakage (e.g., [4, 36, 40]) attacks,
enforcement-based techniques [1, 24, 25] are resilient to such at-
tacks. Full memory safety techniques that enforce spatial [25] and
temporal [24] safety on pointers are examples of enforcement-based
defenses. Lighter-weight defenses in the enforcement-based cate-
gory impose more relaxed policies on code execution at runtime,
but provide better performance. Control Flow Integrity (CFI) [6] is
an example of such a defense that has received signi�cant attention
in the community over the past years, and has even been deployed
in real-world systems [31, 45].

2.1 Control Flow Integrity (CFI)
CFI checks the indirect control transfers at runtime to prevent
control hijacking attacks [6]. It checks forward-edges (e.g., indirect
jumps and calls) and/or backward-edges (e.g., function returns) to
prevent the corruption of indirect control transfers via memory
bugs. While this policy is weaker than full memory safety (for
example, it does not prevent data-only attacks [17]), CFI aims to
prevent the most pernicious types of memory corruption attacks at
a relatively low performance cost.

CFI techniques can be categorized into three broad classes based
on how they generate their control� ow graph (CFG). Perhaps
the most widely studied class of CFI is points-to analysis-based
CFI as it was originally proposed by Abadi et al. [1]. In this tech-
nique, the CFG is constructed statically using points-to analy-
sis [1, 2, 5, 26, 50]. Another class of CFI techniques construct their
CFG dynamically [13, 27, 30]. Dynamic CFIs need additional compu-
tations to identify and add new edges to the CFG during execution.
In this paper, we do not study them.

29

On the E�ectiveness of Type-based Control Flow Integrity ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

The e�ectiveness of points-to analysis-based CFI crucially de-
pends on the ability to construct an accurate CFG. However, a
sound and precise CFG is hard to construct in the general case
due to the undecidability of points-to analysis [19, 32]. Coarse-
grained points-to analysis-based CFI techniques [53, 54] tackle this
problem by grouping many branch targets together; however, such
over-approximation is shown to be too relaxed to prevent control hi-
jacking attacks [12, 16]. Even� ne-grained points-to analysis-based
CFI techniques are shown to be too permissive to prevent all forms
of control hijacking attacks, either because of the imprecisions of
static analysis [14], or because of the versatility of functions like
printf() [7]. These challenges along with the practical di�culties
of generating and handling CFGs in a modular way (e.g., dynamic
loading) have motivated the development of a third class of CFI
based on Runtime Type Checking (RTC).

2.2 Runtime Type Checking
RTC matches the type signature of each indirect control transfer
with its target. For forward-edge protection, RTC checks the type
signature of a function pointer and its target prior to each indirect
control transfer. For backward-edge protection, the type signature
of the callee is stored before the call site. Then this signature is
checked during the epilogue of the callee to make sure that such
a type signature exists in the call site. In other words, RTC lim-
its the control� ow of a program to respect the type signatures.
It, thus, implements a form of CFI that relies on types. The type
matching can be enforced using label-based annotations, in which
labels are ‘hashes’ of function signatures. What constitutes the type
signature requires careful considerations, and is further discussed
in Section 2.4.

2.3 Arity Checking
Arity refers to the number of arguments of a function. Arity check-
ing is a strictly weaker form of RTC, in which only the number of
arguments of call sites and target functions are matched. In other
words, arity checking is a form of RTC in which only one type exists
for the argument. Hence, at runtime only the number of arguments
are compared. Arity checking has been implemented both at the
source code (IFCC) [47] and binary levels (TypeArmor) [49]. IFCC
assigns each function to a set based on its number of arguments,
and only allows indirect calls to the set with the correct number of
arguments. TypeArmor, in addition to the number of arguments,
considers the return type as well. TypeArmor has been shown to
prevent advanced code reuse attacks such as COOP [34].

2.4 Reuse Attack Protector (RAP)
RAP is a code-reuse attack protection that implements RTC. Figure 1
shows an example of type parts for a function pointer and a function
that are used in RAP. In this case, which shows a function and a
function pointer, the return type (void) and the argument types
(int and long) are parts of the type signature, while the names
are not. RAP generates two hashes for each function. One of them
is used when the function is the target of a function pointer. The
other one is used during backward-edge checking.

RAP calculates a hash for each function pointer and instruments
the call site, as shown in the line 4 of Figure 2. This line compares

Typedef void (*fptr) (int , long)

void foo (int i, long j)

func rap_hash: 5d769299

fptr rap_hash: 5d769299

Return type Parameter type RAP output

Figure 1: Type parts in RAP.

1 dq 0x11223344

2 func:

3 ...

4 cmpq $0x11223344 ,-8(%rax)

5 jne .error

6 call *%rax

Figure 2: Forward-edge checking in RAP.

1 jmp label

2 dq 0xffffffffaabbccdd

3 label:

4 call func

5
6 func()

7 .

8 .

9 mov %(rsp),%rcx

10 cmpq $0xaabbccdd ,2(% rcx)

11 jne .error

12 retn

Figure 3: Backward-edge checking in RAP.

the expected hash with the function’s type hash that is located
before the actual function’s memory address. If the hashes do not
match, the execution jumps to an error; otherwise, the indirect call
is taken as shown in line 6. Similarly, for backward-edges, the hash
value that is located before the call site and the one in epilogue are
compared and if they match, the program continues to return as
shown in Figure 3. Previous researches have shown that backward-
edge protection without enough sensitivity leads to the� exibility
to return to di�erent call sites [7, 16]. To address this issue, RAP
encrypts the return address with a key which is stored in a register.
This technique makes a context sensitive version of RAP. However,
this feature is not available in open source version of RAP. Note
that RTC without a shadow stack or an equivalent technique such
as encrypted return address is vulnerable to backward-edge attacks
that have been studied comprehensively by other researchers [7, 16].
Hence, for the rest of this paper, we only focus on forward-edges.

2.5 Type Collisions
An astute reader might suspect that type collisions should exist in
su�ciently large code bases. This is indeed correct; however, we
show that type collisions do not immediately indicate the feasibility
of a practical attack against RTC. To clarify and explain, let us start
with an example.

Figure 4 shows a sample source code with intentional vulnera-
bilities in lines 36 and 37 for leaking and overwriting. This code
is compiled by the RAP plugin that protects the code with RTC.
Figure 5 shows its CFG. Although type collisions exist in this code
(between invalid_target() and corruptible_fptr), according to RTC,

30

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA R. Mirzazade farkhani, S. Jafari, S. Arshad, W. Robertson E. Kirda, H. Okhravi

1 typedef void (* FunctionPointer)(void);
2
3 int flag = 0;

4 char *cmd;

5
6 void valid_target1(void){
7 printf(�Valid Target 1\n�);

8 }

9
10 void valid_target2(void){
11 printf(�Valid Target 2\n�);

12 }

13
14 int final_target(char *cmd){

15 system(cmd);

16 }

17
18 int linker_func(void){
19 if (flag ==1)

20 final_target(cmd);

21 }

22
23 void invalid_target(void){
24 linker_func ();

25 }

26
27 void vulnerable(char * input){

28 FunctionPointer corruptible_fptr;

29 char buf [20];

30
31 if (strcmp(input , �1�) == 0)

32 corruptible_fptr = &valid_target1;

33 else
34 corruptible_fptr = &valid_target2;

35
36 printf(input);

37 strcpy(buf , input);

38
39 corruptible_fptr ();

40 }

Figure 4: A sample vulnerable program.

it is not allowable to call functions such as linker_func() or �nal_
target() (which may be interesting targets for an attacker because
of their ability to spawn a malicious shell) with the corruptible_fptr
function pointer. Such a call is prohibited because the type of the
functions and the corruptible_fptr function pointer are di�erent.
As a result, while many type collisions might exist in large code
bases, their usefulness for a practical attack is questionable. There
may not exist any sensitive target that has type collision with a cor-
ruptible function pointer. Indeed in our analysis of real-world code
bases, we rarely found a package in which a sensitive function (e.g.,
a system call) collides with a corruptible function pointer. Thus,
the questions regarding the e�ectiveness of RTC are not trivial to
answer.

However, we make an observation in this sample source code
that provides an insight into how an attack can be built. We ob-
serve that while the sensitive functions cannot directly be called
by the corruptible_fptr function pointer, it is still possible to invoke
these functions through other functions. In this case, the invalid_
target() function has the same type as the corruptible_fptr function
pointer, so it is feasible to call this function, and as it can be seen,
there is a path from this function to the �nal_target() function. At
least in theory, it looks like that it should be feasible to reach the
�nal_target() function indirectly from the corruptible_fptr function
pointer. To do so; however, one must consider the constraints in
the execution path such as the if condition in line 19. In this case,

...

Figure 5: Control� ow graph of the sample vulnerable pro-
gram. This� gure illustrates how type collision leads to over-
approximation.

the constraint is satis�able because the if condition checks a global
variable which can be overwritten by the attacker.

2.6 Research Questions
The above example and the observations made about possible col-
lisions and indirect invocations of sensitive functions raise the
following research questions:
• Can RTC be practically bypassed using type collisions?
• Are there enough intermediate functions with satis�able
constraints in real-world applications that allow an attacker
to hijack control to a sensitive function (e.g., system calls) in
the presence of RTC?
• How prevalent are these constructs in real-world applica-
tions?

In the rest of the paper, we provide answers to these questions
in order to evaluate the e�ectiveness of the RTC from the secu-
rity perspective in Sections 3, 4, and 5. We discuss the practicality
considerations in Section 6.

3 ATTACK OVERVIEW
In order to evaluate the e�ectiveness of the RTC, we show how an
attacker can exploit type collisions to build real attacks. Although
RTC signi�cantly reduces the number of valid targets, we show that
the scope and prevalence of collisions make it possible to attack
many real-world applications.

3.1 Threat Model
Our threat model is inline with the larger body of literature in the
area of memory corruption. Since data execution prevention (a.k.a.
DEP or W � X) and address space layout randomization (ASLR) are
widely deployed in modern operating systems, we assume that they
are enabled on the target. Moreover, we assume that RAP is also
deployed on the target. Any control hijacking attempt that violates
type checking is properly detected and stopped. Moreover, since we
are interested in studying the e�ectiveness of the RTC paradigm as
a whole, and not the quality of any particular implementation, we

31

On the E�ectiveness of Type-based Control Flow Integrity ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

consider implementation bugs or� aws out-of-scope for our attacks.
In other word, we do not target any implementation weakness.

On the attacker side, we assume the target application contains
one strong or multiple limited memory corruption vulnerabilities
that allow an attacker to write arbitrary values to arbitrary memory
locations including stack and heap and also leak some information
by arbitrary read primitive. A strong vulnerability similar to CVE-
2017-7184 (exploited in Pwn2Own 2017), CVE-2017-0143 (exploited
in WannaCry), CVE-2016-4117, or CVE-2015-0057 simultaneously
provides arbitrary read and write primitives, and can be exploited
multiple times to overwrite multiple values in memory [15]. A
more limited set of vulnerabilities can alternatively be used to
�rst read memory, and then write to it maliciously. For instance,
array out-of-bound access (CVE-2018-5008), non-terminated strings
(CVE-2017-7790) and format string can be used for arbitrary read
primitive. Other vulnerabilities such as double free (CVE-2018-
4990), type confusion (CVE-2015-1641) and format string can be
used for arbitrary write primitive. The long history of memory
corruption vulnerabilities has demonstrated that assuming their
existence even in the most tested code bases (e.g., Linux kernel
and Windows Services) is a reasonable and often valid proposition.
The assumptions in this work are thus realistic and inline with the
defenses [3, 9, 10, 22, 49] and attacks [4, 11, 33, 34, 38] presented in
the literature.

3.2 Attack Preliminaries
In order to perform a successful Typed ROP (TROP) attack against
RTC, an adversary needs to follow some steps to execute an arbi-
trary code. First, during the o�ine preparation phase, the attacker
searches for an interesting function that allows arbitrary execution,
for example execve() or any other function that has an equivalent
behavior. To do so, the arguments of an intended function must be
controllable by the attacker. For example, if the arguments reside
on heap or global memory, they can be overwritten at anytime by
an attacker. Next, the attacker needs to change a function pointer to
hijack control. It is imperative to note that the type of the function
pointer and the function should be the same; otherwise, RTC will
prevent the control transfer. This is what distinguishes a TROP at-
tack from a traditional ROP attack; i.e., a TROP attack is a special
form of ROP in which the hijacked control respects the type check-
ing.

Although this attack looks powerful in that it allows arbitrary
code execution, as mentioned earlier, it is very unlikely to�nd
such a type collision in real-world applications. This is due to the
fact that the attacker needs to have access to a corruptible pointer
that has the same type as the sensitive function of interest for
hijacking (in this case execve()). In order to address this challenge,
we use a technique based on layered invocations and type collisions,
which gives the attacker the opportunity to call functions even with
di�ering types from a corruptible function pointer. In a nutshell,
a target function of interest (i.e., a sensitive function) is invoked
indirectly through other intermediary functions in such a way that:
1) the� rst invoked function has the same type signature as the
corrupted function pointer, 2) each function in the chain contains
a valid invocation of the next function in its code, and 3) the last
function in the chain is the target function of interest.

To facilitate the description and analysis of TROP, we introduce
three types of gadgets that make it possible. We call the� rst func-
tion that has a type collision with a corruptible function pointer a
Collision gadget (C�������), the target function that the attacker
intends to invoke maliciously an Execution gadget (E�������),
and the intermediary functions that are called in a nested fashion
(from the collision gadget to the execution gadget) Linker gadgets
(L�������).

Figure 6 illustrates the high-level view of the location of the
gadgets. Each node is a representation of a gadget. The attacker
�rst corrupts a function pointer to redirect control to the C�������,
which, by de�nition, respects the type checking. The C�������
then calls other L�������s that, in turn, eventually call the E�
������.

3.3 Finding Gadgets
In this section, we describe the method to� nd and chain proper
gadgets to perform a TROP attack. In our terminology, we de�ne the
whole function as a gadget. Finding gadgets starts with a corruptible
function pointer. For example, any function pointer on the stack or
heap adjacent to an over�ow-able bu�er (e.g., CVE-2016-9679), or
those that have known or leakable addresses (e.g., CVE-2017-7219)
are potential targets for corruption. The ideal scenario is to point
this pointer to the� nal target, but due to RTC, this is not possible
in most cases, so instead, the control is transferred to a C�������.
Any function that has the same type signature as the corruptible
function pointer is a candidate for a C�������. The next step is to
�nd an appropriate E�������. For E�������, we chose to focus
on functions that spawn a shell (e.g., execve system call or their
wrappers) since that provides an attacker with a wide range of
malicious capabilities sought after in the payloads. However, an
attacker may choose more limited functions (e.g., one that disables
DEP) if those are su�cient for the ultimate purpose of the attack.
After selecting the C������� and E�������, we need to� nd proper
L�������s to chain them together. With the help of the program’s
call graph, both direct and indirect calls, L�������s can be found
by traversing all the candidate paths starting from a C������� and
ending in an E�������.

We have developed a semi-automated tool that receives as input
the set of all C�������s and E�������s as well as the program’s
call graph, and� nds all candidate L�������s in a given code base.
The tool uses RAP’s output during compilation which is in verbose
mode. The call sites and target sets are identi�able in this output.
The simpli�ed algorithm inside our tool for� nding all candidate
paths is listed in Algorithm 1. In the algorithm:

(1) G is the adjacencymatrix of the program’s direct and indirect
call graph

(2) N is the set of all nodes (functions) in the graph
(3) CG is the set of all C�������s
(4) EG is the set of all E�������s
(5) CP is the set of all candidate paths
(6) c� is the C�������
(7) e� is the E�������
(8) V is the set of already visited nodes (functions) in the graph

in order to prevent loops through recursive path discovery
algorithm (D�������P����)

32

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA R. Mirzazade farkhani, S. Jafari, S. Arshad, W. Robertson E. Kirda, H. Okhravi

(9) P is an ordered list of functions in the call chain

Algorithm 1 Finding candidate paths.
function F���C��������P����(G, N , CG, EG)

CP ;

for c� 2 CG do
for e� 2 EG do

D�������P����(CP, c�, e�, ;, ;)
end for

end for

return CP
end function

function D�������P����(CP, c�, e�, P, V)
P P [{c� }, V V [{c� }

if c� == e� then
CP CP [{P }

else
for � 2 N do

if � < V and G[c�][�] = 1 then
D�������P����(CP, �, e�, P, V)

end if
end for

end if

P P � {c� }, V V � {c� }
end function

As it can be seen in Algorithm 1, the F���C��������P����
function iterates over all C�������s and E�������s, and by using
D�������P����, it� nds all the possible paths (candidate paths)
between every combination of C������� and E�������. Finding
proper L�������s is more challenging though. We de�ne an ideal
L������� as one that satis�es these conditions:

(1) The constraints inside the gadgets are controllable from
outside of it. For example, the constraints are based on global
variables that could be maliciously modi�ed from outside of
the gadget.

(2) There is no constraint inside of the L�������s that a�ects
the� ow to the E�������.

As it can be seen in Figure 6, there might be multiple paths from
a C������� to an E�������. Some paths are useful while others
are not. Empty nodes depict L�������s that do not have at least
one of the two attributes mentioned above, so they are eliminated.
The shaded nodes depict good candidates to reach the target. There
are also some cases where there is a pointer that can be used to
switch between di�erent paths (in this example, nodes 1 and 2).
This provides more� exibility to the attacker.

We also note that it is possible to create a loop using these
gadgets. Creating a loop gives the opportunity to the attacker to
trigger a vulnerability multiple times. This is depicted in Figure 6
by edge #3.

3.4 Constraint Solving
As we consider the whole function as a gadget, there might be
some conditions in L�������s which in�uence the control� ow of
the program. If an L������� contains a condition that prevents
reaching the intended E�������, then it needs to be resolved. For
instance, if there is an if condition in the L������� that returns
from the function, and halts the� ow to the invocation point of

…
Call (*fptr)
….

Potential Linker gadgets

Execution gadget

Collision gadget

12

Legitimate target

3

loop

Indirect call

Direct call

Good candidate gadget

Bad candidate gadget

Figure 6: The location of gadgets in the CFG of the program.
Due to the type mismatching, the fptr is not able to point to
the execution gadget directly; hence it utilizes over approxi-
mation edge.

the E�������, or if there is a null data structure that is needed to
be� lled with proper data before the L������� can be executed,
additional constraints need to be satis�ed. Therefore, the list of
constraints between a C������� and an E������� is every point
in the program that changes the� ow between these two nodes. To
see if the constraints before that point are satis�able, the following
conditions should be in place:

(1) The constraint can be solved by overwriting data in memory.
(2) The data should be also accessible globally in memory out-

side the function.

The� rst condition ensures that the constraint can actually be
controlled by a malicious memory overwrite, while the second
condition ensures that the window of opportunity for overwriting
memory is not too short. For example, while local variables may be-
come corruptible during limited windows of time, their sometimes
short longevity makes them inappropriate targets for constraint
solving. In the last step, to get the concrete values for the con-
straints, depending on the number of constraints and complexity of
them, either manual solving or symbolic execution are applicable.
For our PoC exploits, we solved the constraints manually.

4 PROOF-OF-CONCEPT EXPLOITS
As a proof-of-concept, we show how the Nginx web server and the
Exim mail server protected by RTC can be exploited by TROP at-
tacks. In both cases, we manage to achieve arbitrary execution
while the server is protected by open source version of RAP. We
show how an attacker is able to redirect control to a function that
calls a function from the exec family. This enables us to execute
arbitrary commands via the spawned shell, which is a powerful
attack. To do so, we compiled Nginx-1.10.1 and Exim-4.89 with the
RAP GCC plugin. As we assumed in our threat model that we have
arbitrary read and write access to the memory, gdb is used to mimic
these primitives.

33

On the E�ectiveness of Type-based Control Flow Integrity ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

….

….

….
….

E-Gadget

L-
G
ad
ge
ts

C
-G
ad
ge
t

Figure 7: The� ow of the exploit in Nginx and the corre-
sponding gadgets.

4.1 Nginx Exploit
In the best case scenario, an attacker needs at least two types of
gadgets, C������� and E�������. However, our analysis of Nginx
using our tool indicates that there is no direct collision between
a potentially corruptible function pointer and a sensitive function
(e.g., a system call). We thus need to� nd enough L�������s to
link corruptible function pointers with a sensitive function such
as execve(). Searching through Nginx’s code using the algorithms
described in the previous section, we can indeed� nd enough L�
������s with satis�able constraints.

The overview of our Nginx attack is illustrated in Figure 7. The
attack starts by corrupting the exit_process function pointer. Both
the exit_process function pointer and the ngx_master_process_cycle()
function have the same type signature, as it can be seen in Figure 8.
Therefore, ngx_master_process_cycle() function can be used as our
C�������. Due to the matching type signatures, such a malicious
redirection is not detected by RTC. Even though ngx_conf_�ush_
�les() function is the the valid target of the exit_process function
pointer, due to the type collision, we can change it to point to the
ngx_master_process_cycle() function instead. Our analysis indicates
that the ngx_execute_proc() function, which calls execve() directly,
can be a great candidate for our E�������, so we use it in our
attack. Figure 9 shows that the parameters of the execve() function
are also controllable in a global data structure. Now that we have
our C������� and E�������, we have to chain them with enough
L�������s. Our analysis based on the call graph of Nginx indicates
that two good candidates for L�������s are the ngx_reap_children()
and the ngx_spawn_process() functions. Figure 10 shows there is
the proc function pointer in our L������� which provides more
�exibility for the attacker to change the� ow.

Constraint Solving. There are some constraints in our C�������
and L�������s that should be solved. For example, there is an
if condition in the ngx_master_process_cycle() function on ngx_
reap variable that might prevent execution from reaching ngx_
reap_children(). Moreover, there are multiple if conditions in the
ngx_reap_children() function, our�rst L�������, that have to be
satis�ed to call the ngx_spawn_process() function, our second L�
������. Our second L������� (ngx_spawn_process) always calls
our E������� without any interruption, so in this case, there is no
constraint to be satis�ed.

1 // Type definition of exit_process pointer

2 void (* exit_process)(ngx_cycle_t *cycle)

3 // Type definition of ngx_master_process_cycle

4 void ngx_master_process_cycle(ngx_cycle_t *cycle)

5
6 void ngx_master_process_cycle(ngx_cycle_t *cycle) {

7 ...

8 // This function helps to create a loop. It

calls (* exit_process) in the following

9 ngx_start_worker_processes(cycle ,

ccf ->worker_processes , NGX_PROCESS_RESPAWN);

10 ...

11 // By setting this condition to true , the

attacker can reach to the next gadget which

is ngx_reap_children ()

12 if (ngx_reap) {

13 ngx_reap = 0;

14 ngx_log_debug0(NGX_LOG_DEBUG_EVENT ,

cycle ->log , 0, �reap children�);

15 live = ngx_reap_children(cycle);}

Figure 8: ngx_master_process_cycle is a C�������

1 ngx_execute_proc(ngx_cycle_t *cycle , void *data)

2 {

3 ngx_exec_ctx_t *ctx = data;

4 if (execve(ctx ->path , ctx ->argv , ctx ->envp) ==

-1) {

5 ngx_log_error(

6 NGX_LOG_ALERT ,

7 cycle ->log ,

8 ngx_errno ,

9 �execve () failed while executing %s

\�%s\��,

10 ctx ->name , ctx ->path);

11 }

12 exit (1);

13 }

Figure 9: ngx_execute_proc is an E�������. The parameters
of execve function are controllable globally.

In order to satisfy the constraints listed above, we observe that
they are all controllable by overwriting global variables or heap ob-
jects. Consequently, in our exploit, we� rst use our arbitrary write
vulnerability to set the value of ngx_reap that resides in global mem-
ory to 1. This allows our C������� (ngx_master_process_cycle()) to
call our�rst L������� (ngx_reap_children()). We then use the same
vulnerability to write the desired values to ngx_processes[i].respawn,
ngx_processes[i].exiting, ngx_terminate, and ngx_quit on the heap
that allows our�rst L������� (ngx_reap_children()) to call our
second L�������. Then we overwrite the function pointer (exit_
process) to point to our C�������. After this overwrite, the execu-
tion passes from C������� to the L�������s to the E�������, at
which point a malicious shell is spawned under our control.

4.2 Exim Exploit
For the sake of brevity and due to its similarity to Nginx exploit,
we skip the details of the steps necessary to build Exim exploit. We
�nd that Exim’s source code is indeed large enough that it contains
proper gadgets, and a large number of corruptible memory read
and write operations. A previous example of such a corruption
happened with CVE-2016-9963 that allowed a remote attacker to
read the private DKIM signing key, and write it to a log� le. In our

34

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA R. Mirzazade farkhani, S. Jafari, S. Arshad, W. Robertson E. Kirda, H. Okhravi

1 ngx_spawn_process(

2 ngx_cycle_t *cycle ,

3 ngx_spawn_proc_pt proc ,

4 void *data ,

5 char *name ,

6 ngx_int_t respawn) {

7 ...

8 proc(cycle , data); // The proc function pointer

invokes ngx_execute_proc function in this

case

9 }

Figure 10: ngx_spawn_process is an L�������

….

….

E-Gadget

L-
G
ad
ge
ts

C
-G
ad
ge
t

….

….

….

….

….

Figure 11: The� ow of the exploit in Exim and the corre-
sponding gadgets.

exploit, we again focus on spawning a malicious shell because of
its generality and strength as a remote attack.

Like our Nginx exploit, we use our gadget� nder tool to� nd the
proper gadgets and paths in the program that can be used to reach
an E�������, in Exim’s case, the child_open_uid() function. We
maliciously overwrite the receive_feof function pointer inside the re-
ceive_msg() function and redirect execution to the smtp_setup_msg()
function, which serves as our C�������. The functions acl_check(),
acl_check_internal(), expand_string(), expand_string_internal, and
child_open() serve as our L�������s with easily satis�able con-
straints. Note that while the chain of gadgets is much longer in
the case of Exim, the exploit is indeed simpler because there are
fewer constraints in the L�������s. The� ow of the exploit and the
position of gadgets are shown in Figure 11. In order to bypass some
constraints of the L�������s, we used ${run{/bin/bash}}$\\ as
the payload. This complex payload helps us execute the shell com-
mand and solve the constraints.

4.3 Summary
These two exploits indicate that although RTC does complicate a
successful exploit and places a number of limitations on how such
an exploit can be built, motivated attackers may still� nd feasible
and realistic opportunities to build damaging TROP attacks using
type collisions.

5 EVALUATION
In this section, we evaluate the prevalence of collisions and gadgets
necessary for launching a TROP attack. For our evaluation, we
chose the top 10 C packages in the Ubuntu repository [48] as well
as three widely used web servers (Httpd, Nginx, and Lighttpd)
and a mail server (Exim). The list of the applications are shown
in Table 1. For each of these applications, we compiled it with the
RAP GCC plugin. We then used our gadget� nder tool that parses
the RAP’s output and generates a JSON� le containing the function
pointers as well as their call sites in the program. In addition, our
tool extracts the target functions for each of these call sites. In all
of our evaluation, the default modules of the analyzed applications
were used. In addition, the open source version of RAPwas deployed
with default options and compilation�ags.

5.1 Type Collisions
In order to establish a baseline for the accuracy of type signatures,
we have to distinguish valid and invalid targets. Because of the im-
precision of points-to analysis, no automated analysis can perform
sound and precise determination of valid and invalid targets, so we
�rst manually analyze the JSON output and label targets as valid
or invalid using careful inspection of the source code. This estab-
lishes the baseline to which we can compare RAP’s type signatures.
Note that the manual labeling is not because of the limitations in
the analysis of this e�ort; rather, it is a fundamental limitation of
points-to analysis. Because no automated analysis can establish
sound and precise points-to analysis, comparing RAP’s targets with
any other automated analysis would be meaningless; there would
be no basis to believe one as the ground truth. Moreover, if such
a precise automated analysis existed, points-to analysis-based CFI
could have been implemented precisely. However, we know that
points-to analysis is imprecise, and in fact, the imprecisions have
been shown in the previous work [14]. That is why we manually
label targets. The rest of our analysis is automated.

Table 1 illustrates the statistics for the analyzed applications,
among which the number of function pointer signatures de�ned
by the program and the number of all locations from which these
function pointers are being called (call sites). For example, observe
that applications such as httpd, heavily use function pointers due
to their modular design.

Furthermore, we extract all functions de�ned in the programs,
as well as the functions for which RAP generates a type signature
(hash). Interestingly, RAP generates no hash for 34.6% of the func-
tions, on average, across all programs. One reason is the fact that
RAP does not generate a hash for static functions which cannot
be invoked by external callers and are not called indirectly locally.
Our analysis indicates that a large fraction of functions are not
called indirectly. Speci�cally, only 15.2% of functions are also valid
targets on average across all programs. In other words, about 50.2%

35

On the E�ectiveness of Type-based Control Flow Integrity ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

(a) Targets (b) Edges

Figure 12: Increase in the number of targets and edges when linked with glibc.
Table 1: Over-approximantion of target functions and indirect calls because of type collisions.

App Version Function
Pointer

Call
Sites Functions Functions

w/ Hash
Function Targets Indirect Calls

All Invalid All Invalid

base-passwd 3.5.39 6 6 45 45 (100.0%) 0 0 (0.0%) 0 0 (0.0%)
coreutils 8.2 42 80 1,789 682 (38.1%) 116 43 (37.1%) 416 110 (26.4%)
e2fsprogs 1.42.13 97 264 1,964 1,243 (63.3%) 251 176 (70.1%) 1,383 400 (28.9%)
exim 4.89 43 93 968 607 (62.7%) 88 121 (137.5%) 359 165 (46.0%)
�ndutils 4.6.0 28 52 821 554 (67.5%) 200 89 (44.5%) 326 65 (19.9%)
grep 2.25 19 28 460 264 (57.4%) 38 19 (50.0%) 113 52 (46.0%)
httpd 2.4.25 248 546 2,800 2,338 (83.5%) 1,332 483 (36.3%) 3,915 794 (20.3%)
lighttpd 1.4.45 27 108 899 524 (58.3%) 228 40 (17.5%) 830 221 (26.6%)
ncurses 6.0 46 77 1,835 1,045 (56.9%) 156 273 (175.0%) 969 397 (41.0%)
nginx 1.10.1 84 290 1,299 977 (75.2%) 610 319 (52.3%) 5,977 3,512 (58.8%)
sed 4.2.2 1 1 213 140 (65.7%) 2 0 (0.0%) 2 0 (0.0%)
tar 1.28 46 86 1,166 730 (62.6%) 141 166 (117.7%) 1,008 754 (74.8%)
util-linux 2.27.1 53 75 3,143 1,681 (53.5%) 211 177 (83.9%) 1,060 643 (60.7%)
zlib 1.2.8 5 14 152 108 (71.1%) 5 0 (0.0%) 13 0 (0.0%)

of functions on average have a hash generated for them, while they
are not called indirectly at all. This, consequently, increases the
hash collisions and creates further opportunities for an attacker
to call these functions using irrelevant function pointers with the
same signature. As mentioned before, it is not uncommon for prac-
tical implementations to include non-address taken functions into
the target sets. We observed this behavior in both RAP and LLVM-
CFI implementations.

The important factor for estimating the impact of type collision
is determining the number of functions that are not valid targets of
function pointers but can be indirectly called through one of the
function pointers in the program. The eighth and tenth columns
of Table 1 show the number of invalid target functions and invalid
indirect calls possible in the program because of type collisions.

These numbers underline the scope of the weakness created by
type collisions. In Nginx alone, for example, 3,512 function pointers
can invalidly point to 319 functions which are never intended to
be indirect targets just because they happen to share the same
type signature. Note that in applications that rarely use function
pointers, such as base-passwd and sed, the number of possible

Table 2: Gadget distributions.

App Version C�������L �������E �������

nginx 1.10.1 8 6 1
httpd 2.4.25 40 19 5
lighttpd 1.4.45 8 29 6
exim 4.90 16 32 7

corruptible indirect calls because of type collision is zero, but these
applications are the exceptions rather than the rule. In our analysis,
any application that contains more than tens of function pointers
present abundant opportunities for function pointer corruptions
that respect the RTC.

5.2 Gadget Distribution
Now that we know type collisions can result in numerous oppor-
tunities for control redirection, we shift our focus to counting the
gadgets necessary for an exploit. We use the algorithms described

36

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA R. Mirzazade farkhani, S. Jafari, S. Arshad, W. Robertson E. Kirda, H. Okhravi

in Section 3. Table 2 shows the number of gadgets in four popular
web and mail servers. Any combination of these gadgets could be a
new invocation chain as described in section 3.3 and 3.4. However,
more inter-procedural analysis might be needed to determine con-
trollable L�������s. For these results, we limited our analysis only
to the programs themselves and not the linked libraries because this
provides a more accurate result, and avoids double counting gad-
gets in overlapping sets of linked libraries. Moreover, as described
earlier, the E�������s can be many di�erent targets depending on
the exact goal of the payload (e.g., modifying target con�gurations,
disabling W � X, running a shell script, etc.). For this analysis, we
chose a general, yet powerful type of E�������s, namely those
that allow arbitrary execution via spawning a malicious shell (e.g.,
exec family or system). We also chose C�������s based on the path
to the E�������s from the list of invalid function targets.

As can be observed from the table, there are many gadgets avail-
able in these applications. In fact, Nginx has the lowest number of
gadgets among the four servers analyzed, but as demonstrated, we
could successfully hijack its control and launch a malicious shell.
In our exploit, we used four gadgets from the 15 available in Nginx.

Linked libraries provide numerous other opportunities for mali-
cious control hijacking in the face of RTC. For the sake of simplicity
and accuracy, our gadget counts in Table 2 do not include the gad-
gets from linked libraries, but for the sake of completeness, we now
evaluate the impact of linked libraries, primarily the ubiquitous
library in Linux applications and servers, Libc.

5.3 Libc
For complete protection, the linked libraries must also be protected
with RTC. However, counter-intuitively, here we show that protect-
ing linked libraries with RTC signi�cantly increases the number of
opportunities for the attacker.

To evaluate the impact of linked libraries, we compile the ap-
plications listed in Table 1 this time with glibc

2, and recount the
number of invalid indirect targets and invalid edges (indirect calls),
introduced by the additional collisions. Figure 12a shows the num-
ber of targets in the analyzed applications with and without glibc.
We observe that linking glibc signi�cantly increases the number
of targets that have collisions with the function pointers in the
applications, thus magnifying the opportunities for an attack. The
new collisions open new paths for attackers to transfer control
from the function pointers in the application to the functions inside
glibc while respecting RTC. For example, in coreutil, there are
297 new target functions to which the execution can be transferred,
and in grep, 291 target functions are added to the existing gadgets.

More important than potential targets, however, are the addi-
tional edges. Figure 12b illustrates the additional edges (indirect
calls) allowed in the applications as a result of collisions introduced
by glibc. We observe that the number of the new edges is much
higher than the number of new target functions in glibc. This
is because di�erent function pointers can call all of the colliding
target functions, thus growing the number of possible edges multi-
plicatively.

2https://www.gnu.org/s/libc/

Table 3: Invalid indirect calls added to programs because of
type collisions and imprecise points-to analysis.

App Base Type Checking Points-to Analysis

Total Invalid Total Invalid

base-passwd 0 0 0 (0.0%) 0 0 (0.0%)
coreutils 213 291 78 (26.8%) 308 198 (64.3%)
e2fsprogs 557 861 304 (35.3%) 42 15 (35.7%)
exim 107 212 105 (49.5%) 169 99 (58.6%)
�ndutils 237 279 42 (15.1%) 448 231 (51.6%)
grep 54 105 51 (48.6%) 108 60 (55.6%)
httpd 2,126 2,870 744 (25.9%) - -
lighttpd 327 442 115 (26.0%) 1,096 938 (85.6%)
ncurses 291 558 267 (47.8%) 507 238 (46.9%)
nginx 1,276 2,287 1,011 (44.2%) - -
sed 2 2 0 (0.0%) 2 0 (0.0%)
tar 208 664 456 (68.7%) 360 167 (46.4%)
util-linux 311 943 632 (67.0%) 596 465 (78.0%)
zlib 10 10 0 (0.0%) 10 4 (40.0%)

5.4 Type Checking vs. Points-to Analysis
Previous attacks such as Control Jujutsu [14] describe the impor-
tance of precise CFG. Even though our focus is evaluating RTC-
based CFI variants, we posit that it can be useful to compare the
over-approximation in RTC with points-to analysis-based CFI. Re-
call that the over-approximation in points-to analysis-based CFI is
because of imprecise points-to analysis, while in RTC-based CFI, it
is because of type collisions.

In order to compare the two, we calculate the number of invalid
edges allowed because of their imprecisions. As a baseline for points-
to analysis-based CFI, we use SVF [42, 52], which is the state-of-
the-art in� ow sensitive points-to analysis. We again used manual
labeling and source code inspection to identify valid and invalid
edges. Table 3 shows the number of total and invalid edges in both
type checking and points-to analysis. The base column shows the
ground truth (manual labels). The results provide no clear advantage
for one or the other approach in terms of the number of targets. In
4 of the 14 programs, RTC is less accurate than points-to analysis,
while in 8 of them, it is the opposite. However, we observe that� ow
sensitive points-to analysis is not always possible. For example, for
Nginx and Httpd, SVF was not able to� nish the analysis process,
and in fact crashed after 5 hours (showed by a dash in the table). On
the other hand, RTC can be applied in large code bases more easily.
This experiment suggests that RTC is a more practical solution
which o�ers almost the same security guarantees for large real-
world programs.

6 DISCUSSION
There are further practical challenges of implementing RTC for
real-world applications. For the sake of completeness, we review
them brie�y in this section.

6.1 Type Diversi�cation
As it was shown in our study, the main source of problem in RTC
is type collision. RAP proposes a type diversi�cation technique in
order to generate unique types. Diversi�cation of colliding types,

37

On the E�ectiveness of Type-based Control Flow Integrity ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

1 typedef ngx_int_t (* ngx_output_chain_filter_pt)

2 (void *ctx , ngx_chain_t *in);

3
4 static ngx_int_t ngx_http_charset_body_filter

5 (ngx_http_request_t *r, ngx_chain_t *in)

Figure 13: Type mismatch between the ngx_output_chain_
filter_pt function pointer and its target ngx_http_charset_
body_filter.

in such a way that each function pointer only shares type signa-
ture with its true target would reduce the type collision problem.
By this technique, the attacker will not be able to�nd C�������
and therefore the attacks like TROP could be mitigated from the
beginning. However, such a diversi�cation, unlike generic RTC,
requires a precise points-to analysis to establish the exact target
of each function pointer. As discussed earlier, precise points-to
analysis is shown to be hard, and the imprecisions are shown to be
exploitable [14]. In other words, type diversi�cation re-introduces
the challenge faced by points-to analysis-based CFI, namely the
imprecision of points-to analysis, to RTC.

6.2 Separate Compilation
Large code bases are often compiled in separate compilation units
at di�erent times. This allows easier collaboration and debugging
in large projects. However, separate compilation further compli-
cates type diversi�cation. Since not all source� les are available
during each compilation step, the colliding types to diversify are not
known to RTC. If each compilation unit is diversi�ed independent
of the other units, false positives will be introduced and execution
will halt whenever function pointer from a compilation unit be-
nignly calls a function in a di�erent compilation unit (because their
diversi�ed types are very likely di�erent). Consequently, proper
type diversi�cation in the presence of separate compilation units
requires additional meta data and tracking mechanisms to avoid
breaking functionality.

6.3 Mismatch types
The main assumption in RTC is that the types of caller and callee
are the same. However, this assumption is not always true. For
example in real-world applications there are cases that some part
of the function pointers are void* and these function pointers are
able to point to any other pointer types such as int* and long*.
According to RTC, this is a mismatch. However, in fact, this feature
makes the programs more� exible. Figure 13 shows an example
of this type mismatch between the function pointer with its valid
function target in Nginx.

In order to address this challenge, there are two possible ap-
proaches. The� rst approach is to cast all the void* to the proper
types in order to prevent any mismatch. This approach, used by
RAP, requires large modi�cations in the source code, which makes
it time-consuming. The second approach is to generalize void* to
other types and allow matching of void* to any pointer type. Al-
though this method does not require source code modi�cations,
it makes the RTC more relaxed and creates more opportunity for
attacks.

6.4 Support for Assembly Code
In many low-level libraries, there are portions of the code that are
written in in-line assembly. Prominently, glibc implements system
calls in assembly. Automated annotation of assembly with type
information is hard. A permissive policy for assembly code could
create additional exploitation opportunities, while a restrictive one
crashes benign applications. Further work is necessary in this area
to safely handle assembly code.

7 RELATEDWORK
The related work in the area of memory attacks and defenses is vast.
For broader treatment of the related work, we refer the reader to sur-
veys and systematization of knowledge papers in this area [6, 18, 43].
Here we limit our discussions to closely related e�orts. Control
Jujutsu attack [14] bypasses points-to analysis-based CFI using the
additional edges introduced to a CFG because of the imprecision
of points-to analysis. Control Jujutsu further demonstrates that
certain coding practices such as recursions and modular design
exacerbate the imprecision of context-sensitive and� ow-sensitive
points-to analysis. Control-Flow Bending [7] also attacks CFI. It
assumes a fully-precise CFG, but uses versatile functions such as
printf() as its mechanism. Our attack is not reliant on any spe-
ci�c function like that. Furthermore, a CFB attack is prevented by
the modern Fortify Source option in libc that stops “%n” for-
mat string attacks [51]. Counterfeit Object Oriented-Programming
(COOP) [34] is another attack on CFI. COOP exclusively relies on
C++ virtual functions for its exploitation technique.

8 CONCLUSION
In this work, we evaluated the e�ectiveness of CFI techniques based
on Runtime Type Checking (RTC). We examined RTC from security
and practicality perspectives. We showed that while direct type
collisions between corruptible forward edges and target functions
are rare, type collisions with other functions can be exploited in a
nested fashion to implement an attack (TROP). We further evalu-
ated the prevalence of opportunities for such attacks and showed
that both the type collisions and the gadgets necessary for TROP
attacks are abundantly found in many real-world applications. We
also compared the imprecisions of RTC and points-to analysis tech-
niques and found that their strength is heavily dependent on the
code base. Our� ndings indicate that, while RTC is a practical de-
fense that can complicate exploitation, on its own, it is not su�cient
to prevent control-hijacking memory corruption attacks.

ACKNOWLEDGMENTS
We thank our shepherd, Sangho Lee, and the anonymous reviewers
for their helpful comments. This material is based upon work sup-
ported by the National Science Foundation under Grant No. 1409738.
This research was also sponsored by the U.S. Department of the
Navy, O�ce of Naval Research, under Grant No. N00014-15-1-2948.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-Flow

Integrity. In ACM Conference on Computer and Communications Security (CCS).
[2] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel Castro.

2008. Preventing memory error exploits with WIT. In Security and Privacy, 2008.
SP 2008. IEEE Symposium on. IEEE, 263–277.

38

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA R. Mirzazade farkhani, S. Jafari, S. Arshad, W. Robertson E. Kirda, H. Okhravi

[3] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed
Okhravi. 2015. Timely Rerandomization for Mitigating Memory Disclosures. In
ACM Conference on Computer and Communications Security (CCS).

[4] Andrea Bittau, Adam Belay, Ali José Mashtizadeh, David Mazières, and Dan
Boneh. 2014. Hacking Blind. In IEEE Symposium on Security and Privacy (S&P).

[5] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. 2011. Mitigating code-reuse attacks
with control-�ow locking. In Proceedings of the 27th Annual Computer Security
Applications Conference. ACM, 353–362.

[6] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan
Brunthaler, and Mathias Payer. 2016. Control-Flow Integrity: Precision, Security,
and Performance. https://arxiv.org/abs/1602.04056. In arXiv.

[7] Nicolas Carlini, Antonio Barresi, Mathias Payer, and DavidWagner. 2015. Control-
Flow Bending: On the E�ectiveness of Control-Flow Integrity. In USENIX Security
Symposium.

[8] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav ShachamâĂă, and Marcel Winandy. 2010. Return-Oriented Programming
Without Returns. In ACM Conference on Computer and Communications Security
(CCS).

[9] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. 2015. Readactor:
Practical Code Randomization Resilient to Memory Disclosure. In IEEE Sympo-
sium on Security and Privacy (S&P).

[10] Stephen Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen,
Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and Michael
Franz. 2015. It’s A TRaP: Table Randomization and Protection against Function-
Reuse Attacks. In ACM Conference on Computer and Communications Security
(CCS).

[11] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z. Snow, and
Fabian Monrose. 2015. Isomeron: Code Randomization Resilient to (Just-In-
Time) Return-Oriented Programming. In Network and Distributed System Security
Symposium (NDSS).

[12] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. 2014.
Stitching the Gadgets: On the Ine�ectiveness of Coarse-Grained Control-Flow
Integrity Protection. In USENIX Security Symposium.

[13] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim, and Wenke
Lee. 2017. E�cient protection of path-sensitive control security. In 26th USENIX
Security Symposium (USENIX Security 17). Vancouver, BC: USENIX Association.
131–148.

[14] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,
Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control Jujutsu: On
the Weaknesses of Fine-Grained Control Flow Integrity. In ACM Conference on
Computer and Communications Security (CCS).

[15] gera and riq. 2002. Advances in Format String Exploitation. http://phrack.org/
issues/59/7.html. (2002).

[16] Enes GÃűktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis.
2014. Out of Control: Overcoming Control-Flow Integrity. In IEEE Symposium on
Security and Privacy (S&P).

[17] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. 2016. Data-Oriented Programming: On the Expressiveness
of Non-Control Data Attacks. In IEEE Symposium on Security and Privacy (S&P).

[18] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. 2014. SoK:
Automated Software Diversity. In IEEE Symposium on Security and Privacy (S&P).

[19] Chris Lattner, Andrew Lenharth, and Vikram Adve. 2007. Making Context-
Sensitive Points-to Analysis with Heap Cloning Practical for the Real World. In
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI).

[20] Christopher Liebchen, Marco Negro, Per Larsen, Lucas Davi, Ahmad-Reza
Sadeghi, Stephen Crane, Mohaned Qunaibit, Michael Franz, and Mauro Conti.
2015. Losing Control: On the E�ectiveness of Control-Flow Integrity under Stack
Attacks. In ACM Conference on Computer and Communications Security (CCS).

[21] LLVM Developer Group. 2018. LLVM CFI. https://clang.llvm.org/docs/
ControlFlowIntegrity.html. (2018).

[22] Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P. Chung, Taesoo Kim, and
Wenke Lee. 2015. ASLR-Guard: Stopping Address Space Leakage for Code Reuse
Attacks. In ACM Conference on Computer and Communications Security (CCS).

[23] João Moreira, Sandro Rigo, Michalis Polychronakis, and Vasileios Kemerlis. 2017.
DROP THE ROP: Fine-grained Control-Flow Integrity for the Linux Kernel.
(2017).

[24] Santosh Nagarakatte, Jianzhou Zhao, Milo Martin, and Steve Zdancewic. 2010.
CETS: Compiler Enforced Temporal Safety For C. In International Symposium on
Memory Management (ISMM).

[25] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
2009. SoftBound: Highly Compatible and Complete Spatial Memory Safety for C.
In ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI).

[26] Ben Niu and Gang Tan. 2013. Monitor integrity protection with space e�ciency
and separate compilation. In Proceedings of the 2013 ACM SIGSAC conference on

Computer & communications security. ACM, 199–210.
[27] Ben Niu and Gang Tan. 2015. Per-input control-�ow integrity. In Proceedings

of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
ACM, 914–926.

[28] Aleph One. 1996. Smashing The Stack For Fun And Pro�t. http://phrack.org/
issues/49/14.html. (1996).

[29] PaX Team. 2003. Non-Executable Pages Design. https://pax.grsecurity.net/docs/
pax.txt. (2003).

[30] Mathias Payer, Antonio Barresi, and Thomas R Gross. 2015. Fine-grained control-
�ow integrity through binary hardening. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer, 144–164.

[31] The Chromium Projects. 2015. Control Flow Integrity in Chromium. https:
//www.chromium.org/developers/testing/control-�ow-integrity. (2015).

[32] Ganesan Ramalingam. 1994. The Undecidability of Aliasing. ACM Transactions
on Programming Languages and Systems (TOPLAS) 16, 5 (1994), 1467–1471.

[33] Robert Rudd, Richard Skowyra, David Bigelow, Veer Dedhia, Thomas Hobson,
Stephen Crane, Christopher Liebchen, Per Larsen, Lucas Davi, Michael Franz,
Ahmad-Reza Sadeghi, and Hamed Okhravi. 2017. Address-Oblivious Code Reuse:
On the E�ectiveness of Leakage-Resilient Diversity. In Network and Distributed
System Security Symposium (NDSS).

[34] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming:
On the Di�culty of Preventing Code Reuse Attacks in C++ Applications. In IEEE
Symposium on Security and Privacy (S&P).

[35] SecurityFocus. 1988. BSD Fingerd Bu�er Over�ow Vulnerability. http://www.
securityfocus.com/bid/2/info. (1988).

[36] Je� Seibert, Hamed Okhravi, and Eric Söderström. 2014. Information Leaks
Without Memory Disclosures: Remote Side Channel Attacks on Diversi�ed Code.
In ACM Conference on Computer and Communications Security (CCS).

[37] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86). In ACM Conference on Computer
and Communications Security (CCS).

[38] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-In-Time Code Reuse: On the
E�ectiveness of Fine-Grained Address Space Layout Randomization. In IEEE
Symposium on Security and Privacy (S&P).

[39] Kevin Z. Snow, Roman Rogowski, Fabian Monrose, Jan Werner, Hyungjoon Koo,
and Michalis Polychronakis. 2016. Return to the Zombie Gadgets: Undermining
Destructive Code Reads via Code Inference Attacks. In IEEE Symposium on
Security and Privacy (S&P).

[40] Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lachmund,
and Thomas Walter. 2009. Breaking The Memory Secrecy Assumption. In Euro-
pean Workshop on System Security (EUROSEC).

[41] Subgraph Team. 2014. Subgraph OS. https://subgraph.com/. (2014).
[42] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-Flow Analysis

in LLVM. In International Conference on Compiler Construction (CC).
[43] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal

War in Memory. In IEEE Symposium on Security and Privacy (S&P).
[44] Ben Niu Gang Tan. 2014. Modular Control-Flow Integrity. In Programming

Language Design and Implementation (PLDI).
[45] Jack Tang. 2015. Exploring Control Flow Guard in Windows

10. http://blog.trendmicro.com/trendlabs-security-intelligence/
exploring-control-�ow-guard-in-windows-10. (2015).

[46] Pax Team. 2015. RAP: RIP ROP. https://pax.grsecurity.net/docs/
PaXTeam-H2HC15-RAP-RIP-ROP.pdf. (2015).

[47] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, ÃŽlfar
Erlingsson, Luis Lozano, and Geo� Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM. In USENIX Security Symposium.

[48] Ubuntu. 2017. Ubuntu Popularity Contest. http://popcon.ubuntu.com/by_inst.
(2017).

[49] Victor van der Veen, Enes Göktas, Moritz Contag, Andre Pawlowski, Xi ChenâĂă,
Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano
Giu�rida. 2016. A Tough Call: Mitigating Advanced Code-Reuse Attacks at the
Binary Level. In IEEE Symposium on Security and Privacy (S&P).

[50] Zhi Wang and Xuxian Jiang. 2010. Hypersafe: A lightweight approach to provide
lifetime hypervisor control-�ow integrity. In Security and Privacy (SP), 2010 IEEE
Symposium on. IEEE, 380–395.

[51] Fedora Wiki. 2018. Security Features Matrix. (2018). https://fedoraproject.org/
wiki/Security_Features_Matrix

[52] Sen Ye, Yulei Sui, and Jingling Xue. 2014. Region-Based Selective Flow-Sensitive
Pointer Analysis. In International Static Analysis Symposium.

[53] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen Mc-
Camant, Dawn Song, and Wei Zou. 2013. Practical Control Flow Integrity and
Randomization for Binary Executables. In IEEE Symposium on Security and Pri-
vacy (S&P).

[54] Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries. In
USENIX Security Symposium.

39

https://arxiv.org/abs/1602.04056
http://phrack.org/issues/59/7.html
http://phrack.org/issues/59/7.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
http://phrack.org/issues/49/14.html
http://phrack.org/issues/49/14.html
https://pax.grsecurity.net/docs/pax.txt
https://pax.grsecurity.net/docs/pax.txt
https://www.chromium.org/developers/testing/control-flow-integrity
https://www.chromium.org/developers/testing/control-flow-integrity
http://www.securityfocus.com/bid/2/info
http://www.securityfocus.com/bid/2/info
https://subgraph.com/
http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-control-flow-guard-in-windows-10
http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-control-flow-guard-in-windows-10
https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf
https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf
http://popcon.ubuntu.com/by_inst
https://fedoraproject.org/wiki/Security_Features_Matrix
https://fedoraproject.org/wiki/Security_Features_Matrix

	i01-1-mishra
	i01-2-kouwe
	Abstract
	1 Introduction
	2 Background
	2.1 Use-after-free
	2.2 Uninitialized reads
	2.3 Type safety

	3 Threat Model
	4 Overview
	5 Heap
	5.1 Typed memory allocations
	5.2 Wrapper detection and inlining

	6 Stack
	6.1 Guaranteed initialization on the safe stack
	6.2 Typed unsafe stacks

	7 Implementation
	8 Evaluation
	8.1 Security
	8.2 Type detection
	8.3 Wrapper detection and inlining
	8.4 Memory overhead
	8.5 Run-time overhead
	8.6 Firefox case study

	9 Limitations
	10 Related Work
	11 Conclusion
	References

	i01-3-farkhani
	Abstract
	1 Introduction
	2 Background and Problem Definition
	2.1 Control Flow Integrity (CFI)
	2.2 Runtime Type Checking
	2.3 Arity Checking
	2.4 Reuse Attack Protector (RAP)
	2.5 Type Collisions
	2.6 Research Questions

	3 Attack Overview
	3.1 Threat Model
	3.2 Attack Preliminaries
	3.3 Finding Gadgets
	3.4 Constraint Solving

	4 Proof-of-Concept Exploits
	4.1 Nginx Exploit
	4.2 Exim Exploit
	4.3 Summary

	5 Evaluation
	5.1 Type Collisions
	5.2 Gadget Distribution
	5.3 Libc
	5.4 Type Checking vs. Points-to Analysis

	6 Discussion
	6.1 Type Diversification
	6.2 Separate Compilation
	6.3 Mismatch types
	6.4 Support for Assembly Code

	7 Related work
	8 Conclusion
	References

	i01-4-ahmadvand
	Abstract
	1 Introduction
	2 Background & Related work
	2.1 Software integrity protection
	2.2 Nondeterministic code detection

	3 Design
	3.1 Segregation of input data/control-flow dependent instructions
	3.2 Short Range Oblivious Hashing (SROH)
	3.3 Data-Dependent Instructions (DDIs)
	3.4 Intertwined protection

	4 Implementation
	4.1 Protection process
	4.2 Input dependency detection
	4.3 Oblivious hashing (OH)
	4.4 Short Range Oblivious Hashing (SROH)
	4.5 Self-checksumming (SC)
	4.6 Response mechanism

	5 Evaluation
	5.1 Dataset
	5.2 Preparation
	5.3 Coverage
	5.4 Performance analysis
	5.5 Security analysis

	6 Discussion
	6.1 Coverage
	6.2 Implicit protection with OH/SROH
	6.3 Performance

	7 Conclusions
	References
	A A full example of OH+SROH utilization

	i02-1-liu
	Abstract
	1 Introduction
	2 Assumptions and Goals
	3 Related Work
	3.1 Traditional 2FA
	3.2 2FA with Less User-Phone Interactions

	4 Typing-Proof
	4.1 Enrollment and Login
	4.2 Similarity Score
	4.3 Usability Analysis
	4.4 Cost Analysis

	5 Evaluation
	5.1 Data Collection
	5.2 Parameters Configuration
	5.3 False Rejection Rate
	5.4 False Acceptance Rate

	6 Security Analysis
	7 User Study
	7.1 Procedure
	7.2 Usability

	8 Discussion
	9 Conclusion
	References
	A Quantitative Usability Analysis Framework
	B Prototype Implementation
	C System Usability Scale
	D Post-test Questionnaire
	E Comparison Results

	i02-2-mccully
	Abstract
	1 Introduction
	2 Related Work
	2.1 Keystroke dynamics
	2.2 Collaborative editing
	2.3 Identification vs. Authentication

	3 Study: User Identification in Collaboration Services
	3.1 The UB Data Set
	3.2 Log replay data set (LRDS)
	3.3 Feature engineering
	3.4 Random forest classification
	3.5 Model improvements
	3.6 Results

	4 Indirect Typing Biometric Attack
	4.1 Authentication service
	4.2 Forgery attack scenario
	4.3 Creating a forgery
	4.4 TypingDNA Forgery Attack

	5 Discussion
	5.1 Generalizability
	5.2 Practical implications
	5.3 Broader implications

	6 Conclusions
	References

	i02-4-lu
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Online Password Guessing Attacks
	2.2 Defenses against Online Password Attacks
	2.3 Offline Password Attacks

	3 Methodology
	3.1 Modeling Lockout Threshold and Counting Mechanism
	3.2 Black-box Tests

	4 A Measurement Study of Rate Limiting Implementations
	4.1 Experiment Setup
	4.2 Data Collection

	5 Evaluation and Analysis
	5.1 Data Analysis
	5.2 Security Analysis
	5.3 Interesting Observations
	5.4 Recommendations

	6 Limitations and Discussion
	7 Conclusion
	Acknowledgments
	References

	i03-1-copty
	Abstract
	1 Introduction
	2 An extremely abstract OS
	2.1 Implementation details
	2.2 Multiple paths

	3 Malware classification
	3.1 Features
	3.2 Experimental setup
	3.3 Experimental Results

	4 Related work
	4.1 Extreme abstraction
	4.2 Lightweight symbols
	4.3 Malware classification

	5 Future work
	6 Conclusion
	Acknowledgments
	References

	i03-2-machiry
	Abstract
	1 Introduction
	2 Threat Model
	3 Approach Overview
	3.1 Why Loops?
	3.2 Loop Characterization
	3.3 Application Classification

	4 Resilience to Feature-unaware Perturbations
	4.1 Application Transformations
	4.2 CFG Obfuscation
	4.3 Reflection
	4.4 Loop Perturbations

	5 Classification Evaluation
	5.1 Datasets
	5.2 Iterative Pruning Performance
	5.3 Malware Classification Results
	5.4 Importance of Loops and Semantic Labels
	5.5 Resilience to Feature-unaware Perturbations

	6 Discussion
	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

	i03-3-oprea
	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Enterprise Perimeter Defenses
	2.2 Problem definition and adversarial model
	2.3 System Overview
	2.4 Comparison with previous work
	2.5 Ethical considerations

	3 MADE Training
	3.1 Data Filtering and Labeling
	3.2 Feature Extraction
	3.3 Feature Selection
	3.4 Model Selection

	4 Testing and Evaluation
	4.1 MADE Testing
	4.2 Evaluation, Analysis, and Feedback
	4.3 Discussion and Limitations

	5 Related Work
	6 Conclusion
	References

	i03-4-echeverria
	Abstract
	1 Introduction
	2 Related Work
	3 Datasets
	3.1 Bot Datasets
	3.2 Aggregated Bot Dataset
	3.3 User Dataset
	3.4 Botometer Scores

	4 Methodology - The LOBO test
	5 Features for Classification
	5.1 User Features
	5.2 Tweet Features

	6 Experiments
	6.1 Subsampling
	6.2 General Classifiers
	6.3 LOBO Test I - C30K
	6.4 LOBO Test II - C500

	7 Beyond the LOBO test
	7.1 Relatively Stable Results
	7.2 Learning Rate
	7.3 TSNE plot

	8 Discussion
	8.1 Accuracy and Generalization
	8.2 Improvements with small data additions
	8.3 Scalability

	9 Conclusion
	References

	i04-1-tuveri
	Abstract
	1 Introduction
	2 Background
	2.1 SM2: Chinese Cryptography Standards
	2.2 Remote Timing Attacks
	2.3 Cache Timing Attacks
	2.4 EM Analysis
	2.5 SM2 Implementation Attacks: Previous Work

	3 SM2 in OpenSSL
	4 SM2DSA: Remote Timings
	5 SM2DSA: Cache Timings
	5.1 Scalar Multiplication
	5.2 Modular Inversion

	6 SM2PKE: EM Analysis
	7 SCA Mitigations
	7.1 Scalar Multiplication: SCA Mitigations
	7.2 Modular Inversion: SCA Mitigations
	7.3 SCA Mitigations: Evaluation

	8 Conclusion
	Acknowledgments
	References
	A Remote Timings SCA Evaluation: ECDSA

	i04-2-wichelmann
	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Analysis Setup and Targeted Software

	2 Background
	2.1 Dynamic Binary Instrumentation
	2.2 Microarchitectural Leakage
	2.3 Mutual Information Analysis
	2.4 Signing Algorithms

	3 MicroWalk Analysis Technique
	3.1 Leakage Analysis Model
	3.2 Capturing Internal States
	3.3 Preparing State Variables
	3.4 Leakage Analysis
	3.5 Interpretation of MI Score

	4 MicroWalk Framework
	4.1 Investigated Binary
	4.2 Input Generation
	4.3 Trace Generation
	4.4 Trace Preprocessing
	4.5 Leakage Analysis
	4.6 Manual Inspection and Visualization

	5 Case Study I: Intel IPP
	5.1 Applying MicroWalk MI Analysis to IPP
	5.2 Discovered leakages in Intel IPP

	6 Case Study II: Microsoft CNG
	6.1 Applying MicroWalk MI Analysis to CNG
	6.2 Discovered leakages in Microsoft CNG

	7 Related Work
	8 Conclusion
	8.1 Future Work

	References

	i04-3-zhang
	Abstract
	1 Introduction
	2 Background
	2.1 Cache Side-channel Attacks
	2.2 Cache Side-channel Defenses
	2.3 Deep Neural Networks

	3 Methodology Overview
	4 Dataset Construction
	4.1 An Abstract Model
	4.2 Modeling Specific Attacks
	4.3 Modeling Defense Solutions

	5 DNN Training and Inference
	5.1 Dataset Processing
	5.2 Training
	5.3 Inference

	6 Evaluation
	6.1 Attack Strategies
	6.2 Defense Strategies

	7 Methodology Validation
	8 Related Work
	9 Conclusion
	References

	i04-4-liang
	Abstract
	1 Introduction
	2 Problem
	2.1 Side-Channel Attack over Memory Accesses
	2.2 Burdensome Obfuscation of Access Pattern
	2.3 Toward Practically Efficient Obfuscation

	3 Overview
	3.1 Motivation
	3.2 Challenge
	3.3 Methodology

	4 Design
	4.1 Architecture
	4.2 Position Map Compression
	4.3 Position Map Update

	5 Implementation
	6 Evaluation
	6.1 Memory Access Randomness
	6.2 Execution Time
	6.3 Memory Usage

	7 Discussion
	8 Conclusion
	References

	i05-1-junaid
	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivating Example
	2.3 Challenges

	3 StateDroid Overview
	3.1 Architecture
	3.2 Advance Over State-of-the-Art Work

	4 API Call Detector
	4.1 Reengineering Lifecycle Models
	4.2 Deriving Event & Callback Sequences
	4.3 Detecting API Call Sequences

	5 Action Detector
	5.1 Object State Machines
	5.2 API & Action Formalization
	5.3 Generating API Call Sequences
	5.4 Constructing Object State Machines

	6 Attack Detector
	6.1 Action-Effect & Attack Formalization
	6.2 Frame Axioms

	7 Evaluation
	7.1 RQ1: Accuracy of Action Detector
	7.2 RQ2: Accuracy of Attack Detector
	7.3 RQ3: Comparison with Existing Tools
	7.4 RQ4: StateDroid's Performance

	8 Related Work
	9 Discussion
	10 Conclusion
	11 Acknowledgments
	References

	i05-2-allen
	Abstract
	1 Introduction
	2 Rethinking Contextual Awareness
	2.1 Less Effective Contextual Information
	2.2 Case Study: Identifying Informative Context Factors
	2.3 Calling for Lightweight Context Dependencies

	3 PikaDroid
	3.1 Overview
	3.2 Static Analysis Module
	3.3 Learning Module

	4 Implementation
	5 Dataset
	6 Evaluation
	6.1 Effectiveness
	6.2 Comparison with Prior Work
	6.3 Robustness
	6.4 Classification Models
	6.5 Performance

	7 Related work
	8 Conclusion
	9 Acknowledgments
	References

	i05-3-wermke
	Abstract
	1 Introduction
	2 Android Obfuscation Techniques
	3 Detecting ProGuard Obfuscation
	4 Large Scale Obfuscation Analysis
	4.1 Obfuscation Trends

	5 Developer Survey
	5.1 Results and Takeaways

	6 Obfuscation Experiment
	6.1 Results and Takeaways

	7 Discussion
	8 Threats to Validity
	9 Related Work
	10 Conclusion
	References
	A Ethical Considerations
	B Online Survey
	B.1 ProGuard Study - Exit Survey

	i05-4-chau
	Abstract
	1 Introduction
	2 Scope
	2.1 Attack Surfaces
	2.2 Platform and Test Setup
	2.3 Threat Model
	2.4 App Selection

	3 App Weaknesses & Network Attacks
	3.1 Raw Content Transfer In Clear
	3.2 Bootstrap Information Transfer in Clear
	3.3 Raw Content Transfer over TLS
	3.4 Bootstrap Information Transfer over TLS
	3.5 Threats to User Security and Privacy

	4 App Weaknesses & Local Attacks
	4.1 Log File Leakage
	4.2 Raw Content on External Storage
	4.3 Raw Encryption Key on External Storage
	4.4 Raw Content on Internal Storage
	4.5 Raw Encryption Key on Internal Storage
	4.6 Direct Content Source on Internal Storage
	4.7 Client-Side Authorization
	4.8 Raw Encryption Key in Memory

	5 Discussions
	5.1 Responsible Disclosure and Aftermath
	5.2 Possible Countermeasures and Challenges

	6 Related Work
	7 Conclusion
	References
	A APPENDIX
	A.1 Legal and Ethical Matters
	A.2 Table of Apps and CWEs

	i06-1-mani
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology & Experimental Setup
	5 Proxy Availability & Performance
	5.1 Performance
	5.2 Expected vs. Unexpected Content
	5.3 Anonymity

	6 HTML Manipulation
	7 File Manipulation
	7.1 Detailed Findings
	7.2 Network Diversity and Consistency of Malicious Proxies

	8 SSL/TLS Analysis
	9 Comparison With Tor
	10 Ethical considerations
	11 Conclusion
	Acknowledgments
	References
	A Examples of HTTP Proxy Protocols
	B Client locations
	C File Manipulation Infections

	i06-2-ramanathan
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Volumetric Attacks
	2.2 Related Work
	2.3 SENSS vs First-ISP vs Clouds

	3 SENSS
	3.1 Challenges
	3.2 SENSS Architecture
	3.3 ISP Implementation
	3.4 Client Programs
	3.5 Security and Robustness

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 2016 attack on Dyn
	4.3 Effectiveness in Sparse Deployment
	4.4 Comparison of SENSS and Cloud Defenses
	4.5 Delay, Traffic and Message Cost
	4.6 Scalability within an ISP

	5 Conclusion
	6 Acknowledgement
	References

	i06-3-baek
	Abstract
	1 Introduction
	2 Wi-Fi Calling
	2.1 Wi-Fi Calling Architecture
	2.2 Wi-Fi Calling Handshakes

	3 Security in Wi-Fi Calling
	3.1 Privacy of Users
	3.2 Availability of Services
	3.3 Attacks Originating From Victim's UE and Attacker's AP

	4 IMSI Privacy Attack
	4.1 Attack Scenario
	4.2 Attack Setup
	4.3 Results of Attacks
	4.4 Impact and Applicability

	5 DoS Attacks
	5.1 Attack Scenarios
	5.2 Attack Setup
	5.3 Results of Attacks
	5.4 Impact and Applicability

	6 Countermeasures
	6.1 IMSI Privacy Attack Countermeasures
	6.2 DoS Countermeasures

	7 Discussion
	7.1 Trade-off Between Security and Usability
	7.2 Trade-off Between Security and Deployment

	8 Related work
	9 Conclusion
	References

	i06-4-sy
	Abstract
	1 Introduction
	2 Background
	2.1 Session ID Resumption
	2.2 Session Ticket Resumption
	2.3 Session Resumption via Pre-Shared Keys
	2.4 Comparison of Session Resumption Mechanisms

	3 Privacy Problems with TLS Session Resumption
	3.1 Lifetime of Session Resumption Mechanisms
	3.2 Third-Party Tracking via Session Resumption

	4 Data Collection
	4.1 Alexa Top Million Data Set
	4.2 Browser Measurements
	4.3 DNS Data Set

	5 Evaluation
	5.1 Evaluation of Server Configurations
	5.2 Evaluation of Browser Configurations
	5.3 Evaluation of Real-World User Traffic

	6 Countermeasures
	7 Related Work
	8 Conclusion
	References

	i07-1-garmany
	Abstract
	1 Introduction
	2 Model and Assumptions
	2.1 Modern Vulnerability Exploitation

	3 Design
	3.1 Knowledge Base
	3.2 Propagating Control
	3.3 Finding Sinks
	3.4 Program Paths
	3.5 Triggering Input

	4 Implementation Details
	5 Evaluation
	5.1 Exploitation Primitive Trigger (EPT)
	5.2 Fine Tuning

	6 Discussion and Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	Appendices
	A JavaScript Code Corresponding to Running Example
	B SSA-map

	i07-2-rodriguez
	Abstract
	1 Motivation
	2 Problem Statement
	3 Methodology
	3.1 Data Collection
	3.2 Labeling
	3.3 Feature Selection
	3.4 Learning

	4 Evaluation
	4.1 Detection
	4.2 Impact on the Page Loading Time

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References
	A Theoretical Upper Bound for False Positives and Negatives
	B Additional Plots and Tables

	i07-3-xu
	Abstract
	1 Introduction
	2 Problem Statement and Related Work
	2.1 Multi-tab Threat Model
	2.2 Related work

	3 Overview of Multi-tab Attacks
	4 Dynamic Page Split
	4.1 Challenges in Identifying True Split Points
	4.2 BalanceCascade-XGBoost Algorithm

	5 Chunk-Based Page Classification
	5.1 Feature Selection
	5.2 Classifier Design

	6 Experimental Results
	6.1 Experiment Setup
	6.2 Evaluation of Multi-tab] Attacks
	6.3 Evaluation of Page Split
	6.4 Evaluation of Chunk-Based Classification
	6.5 Evaluation with More Than Two Tabs

	7 Conclusion and Future Work
	References
	A The Rest Features in Feature Set
	B Feature Selection

	i07-4-acker
	Abstract
	1 Introduction
	2 Background
	3 Mechanism design
	3.1 Overview
	3.2 Configuration structure
	3.3 Client-side application
	3.4 Misconfiguration

	4 Policy comparison and combination
	4.1 for policy comparison
	4.2 and for policy combination

	5 Prototype implementations
	5.1 Client-side enforcement
	5.2 Server-side manifest handling
	5.3 Automated manifest generation from observed traffic
	5.4 Limitations and considerations

	6 Evaluation
	6.1 Functional evaluation
	6.2 Longitudinal study
	6.3 Performance measurement

	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Statistical data

	i08-1-ziegeldorf
	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Scenario and Requirements
	2.2 Analysis of Related Work

	3 Cryptographic Building Blocks
	4 SHIELD Framework
	4.1 Overview of Supervised Classification
	4.2 Secure Building Blocks
	4.3 Implementation and Evaluation Setup

	5 Hyperplane Classifiers
	5.1 Evaluation

	6 Artificial Neural Networks
	6.1 Evaluation

	7 Naive Bayes
	7.1 Evaluation

	8 Hidden Markov Models
	8.1 Evaluation

	9 Outsourcing
	9.1 Evaluation of Outsourcing

	10 Conclusion
	References
	A Detailed Protocols for Secure Building Blocks
	A.1 Max and Argmax
	A.2 Scalar Products
	A.3 Polynomial Approximation of Arbitrary Functions
	A.4 OT-based Evaluation of Discrete Functions
	A.5 Evaluating Gaussians
	A.6 Backtracking

	B Security Discussion
	B.1 Security of the Building Blocks
	B.2 Security of the Classifier Designs

	C Evaluation of Outsourcing for the service provider

	i08-2-kesarwani
	Abstract
	1 Introduction
	2 related work
	3 Problem Framework
	4 Model Extraction Warning
	4.1 Strategy 1: Providing model extraction warnings using information gain metric
	4.2 Strategy 2: Providing model extraction warnings using coverage metric

	5 Experiments
	5.1 Model extraction status for source DT Models
	5.2 Model extraction status for source NN Models

	6 Conclusion and Future Work
	References

	i08-3-fang
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Collaborative Filtering
	2.2 Attacks to Recommender Systems

	3 Problem Formulation
	3.1 Threat Model
	3.2 Attacks as an Optimization Problem

	4 Our Poisoning Attacks
	4.1 Overview
	4.2 Approximating the Optimization Problem
	4.3 Solving the Optimization Problem
	4.4 Generating Rating Scores

	5 Experiments
	5.1 Experimental Setup
	5.2 Attacking Graph-based Systems
	5.3 Transferring to Other Systems

	6 Detecting Fake Users
	7 Conclusion and Future Work
	References

	i08-4-wei
	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Overview
	5 Power Extraction
	5.1 Interference Sources
	5.2 Extraction Methods

	6 Background Detection
	6.1 Intuition
	6.2 Attack Method
	6.3 Evaluation

	7 Image Reconstruction via Power Template
	7.1 Intuition
	7.2 Attack Method
	7.3 Evaluation

	8 Related Work
	9 Conclusion
	A Preliminaries
	A.1 Convolutional Neural Network
	A.2 CNN Accelerator Design
	A.3 Basics on Power Side Channel

	B Discussion and Future Work
	C Attack results on the MNIST dataset
	References

	i09-1-proskurin
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Exception Levels
	2.2 Guest Physical Memory Architecture
	2.3 Debug Exceptions
	2.4 Translation Lookaside Buffer
	2.5 Threat Model

	3 Guest Kernel Monitoring Primitives
	3.1 Implementing Kernel Tap Points
	3.2 Novel Single-Stepping Mechanism
	3.3 Xen altp2m on ARM
	3.4 Splitting the TLBs

	4 Evaluation
	4.1 System Setup
	4.2 DRAKVUF on ARM
	4.3 Performance
	4.4 Effectiveness

	5 Discussion
	5.1 Alternative Tracing Methods
	5.2 Limitations

	6 Related Work
	7 Conclusion
	References

	i09-2-lin
	Abstract
	1 Introduction
	2 Background
	2.1 Linux Container
	2.2 Linux Kernel Security Mechanisms
	2.3 CPU Protection Mechanisms

	3 Attack Dataset Description
	3.1 Exploit Collection
	3.2 Attack Taxonomy
	3.3 Exploit Dataset

	4 Security Evaluation of Container
	4.1 Experiment Setup
	4.2 Result Overview
	4.3 Analysis of Privilege Escalation Attacks
	4.4 A Brief Summary

	5 Defeating Kernel Privilege Escalation Attacks
	5.1 Kernel Privilege Escalation Attack Model
	5.2 Countermeasures
	5.3 Effectiveness and Performance

	6 Discussion on Limitation
	7 Related work
	7.1 Container Security
	7.2 Attack Taxonomy

	8 Conclusion
	Acknowledgments
	References

	i09-3-futagami
	Abstract
	1 Introduction
	2 Out-of-band Remote Management
	3 VSBypass
	3.1 Assumptions and Threat Model
	3.2 Architecture

	4 Implementation
	4.1 Proxy VM
	4.2 I/O Interception
	4.3 Redirection of Virtual Interrupts
	4.4 Sharing VRAM
	4.5 VM Migration

	5 Experiments
	5.1 Eavesdropping on I/O data
	5.2 Performance of a Virtual Serial Console
	5.3 Performance of GUI Remote Access

	6 Related Work
	7 Conclusion
	References

	i09-4-cho
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Architecture and TrustZone
	2.2 Legitimate Channels between the Normal and Secure Worlds
	2.3 ARM Cache Architecture
	2.4 Previous Cache Attacks

	3 Assumptions and Attack Model
	4 Cross-world Covert Channels
	4.1 Prime+Count Overview
	4.2 Prime the Cache
	4.3 Count Using Cache Refill Events
	4.4 A Simple Message Encoding Method
	4.5 Cross-Core Covert Channels

	5 Implementation
	6 Evaluation
	6.1 Effectiveness of Prime+Count
	6.2 Choosing Bucket Ranges
	6.3 Capacity Measurement
	6.4 Image Transfer

	7 Discussion
	7.1 Limitations of Prime+Count
	7.2 Cross-world Covert Channels without Normal World Kernel Privileges
	7.3 Limitations of Our Experiments

	8 Related Work
	9 Conclusion
	References

	i10-1-aviv
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Study Design and Materials
	3.2 Live Simulation Setup and Coordination
	3.3 Procedure
	3.4 Recruitment

	4 Realism and Limitations
	5 Results
	5.1 Comparing Attack Rates Across Video and Live Studies
	5.2 Post-Hoc Participant Feedback

	6 Implications
	7 Conclusions
	References
	A Survey Material
	A.1 Ante Hoc Demographic Questionnaire
	A.2 Post Hoc Participant Strategies Questionnaire Questions
	A.3 Observation Forms
	A.4 Guide/Script for Administering Study

	B Visualization of Authentication
	B.1 Patterns
	B.2 PINs

	i10-2-neupane
	i10-3-wiese
	Abstract
	1 Introduction
	2 Ethical considerations
	3 Threats and Opportunities
	4 Form Factor Survey
	4.1 Materials and Methods
	4.2 Results
	4.3 Discussion
	4.4 Limitations

	5 Field Study
	5.1 Methods
	5.2 Materials

	6 Field Study Results & Discussion
	6.1 Participants and Confidants
	6.2 Recovery Rate
	6.3 Task Durations
	6.4 Security and Trust
	6.5 Sentiments and Token Handling

	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References
	A Form Factor Study Materials
	B Results of form factor survey
	C Questionnaire 1
	D Questionnaire 2
	E Questionnaire for Confidants

	i10-4-farhang
	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Upgrades
	2.2 Software Updates
	2.3 Purchasing New Devices

	3 Methodology
	3.1 Online Survey
	3.2 Measures
	3.3 Study Procedures
	3.4 Participants

	4 Results
	4.1 To Upgrade, or Not to Upgrade?
	4.2 Perceived Usefulness and Satisfaction
	4.3 Measuring Upgrade Cost
	4.4 Security Concerns
	4.5 Free Upgrade and Notification Approach
	4.6 Purchasing New Device

	5 End of Life (EOL) and Security after EOL
	5.1 Security after EOL

	6 Discussion
	6.1 Better Communication to Address Privacy Concerns
	6.2 Better Upgrade Messaging
	6.3 Security and the Need for a Roadmap after EOL
	6.4 Reduce Perceived Cost

	7 Limitations
	8 Conclusion
	References
	A Survey Instrument
	B Code-book
	B.1 Code-book: Not Upgrade
	B.2 Code-book: Upgrade

	i11-1-jain
	Abstract
	1 Introduction
	2 Motivation
	2.1 Evolutionary Fuzzing
	2.2 Motivating Example
	2.3 Lessons learned

	3 Overview
	3.1 Input Execution and Fitness Function
	3.2 DTA and Input Type Inference
	3.3 Type Based Mutation

	4 Input Type Inference
	4.1 In-memory Data Structure Identification for Input Offsets
	4.2 Basic Data Type Identification
	4.3 Array Detection
	4.4 Precise Data Type Identification

	5 Type Inference-assisted Mutation
	5.1 Coverage-oriented Mutation
	5.2 Bug-oriented Mutation

	6 Implementation
	7 Evaluation
	7.1 LAVA-M Dataset
	7.2 MA Dataset
	7.3 Crash Analysis

	8 Related Work
	8.1 Directed Fuzzing Approaches
	8.2 Input Grammar-Based Fuzzing Approaches
	8.3 Evolutionary Fuzzing Approaches

	9 Conclusions
	References
	9.1 Mutation Cycle Algorithm
	9.2 Howard Implementation Details
	9.3 Crash Analysis Details
	9.4 Results on MA dataset for 24hr Run

	i11-2-pang
	Abstract
	1 Introduction
	2 Background
	2.1 C++ Inheritance and Cast Operations
	2.2 Type Confusion
	2.3 Defenses against Type Confusion

	3 Threat Model
	4 Bitype Design and Implementation
	4.1 Overview
	4.2 Safe Encoding Scheme
	4.3 Object Tracing
	4.4 Typecasting Verification
	4.5 Optimization
	4.6 Implementation

	5 Evaluation
	5.1 Coverage
	5.2 Performance Overhead
	5.3 Memory Overhead
	5.4 Compilation Time Overhead

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	i11-3-liu
	Abstract
	1 Introduction
	2 Related Work
	2.1 Static Analysis to Detect Concurrency Problems
	2.2 Concurrency Error Detection
	2.3 Logic-Based Methods
	2.4 Fuzz Testing

	3 Case Study of Concurrency Vulnerabilities
	3.1 Real-World Concurrency Vulnerabilities
	3.2 Characteristics of Concurrency Vulnerabilities

	4 Static Analysis
	4.1 Shared Memory Discovery
	4.2 Sensitive Operation Marking
	4.3 Data-flow Merging
	4.4 Vulnerability Categorization
	4.5 Semantic Checking

	5 Thread-Aware Fuzzing
	5.1 Interleaving Exploring Priority
	5.2 Targeted Priority
	5.3 Load Balance

	6 Implementation
	6.1 Implementation of Static Analysis
	6.2 Implementation of Thread-Aware Fuzzing

	7 Evaluation
	7.1 Benchmark Suite
	7.2 Experimental Results
	7.3 Validation of Detected Concurrency Vulnerabilities
	7.4 Analysis of Static Analysis Results
	7.5 Abnormal Time Cost of Static Analysis

	8 Limitations and Future Work
	8.1 Scalability of Static Analysis
	8.2 Capacity of AFL in Exploring Paths
	8.3 Restrictions of Manual Validation
	8.4 Additional Limitations

	9 Conclusion
	References

	i11-4-ye
	Abstract
	1 Introduction
	2 System Architecture
	3 Proposed Method
	3.1 Feature Extraction
	3.2 HIN Constructor
	3.3 snippet2vec: HIN Representation Learning
	3.4 Multi-view Fusion Classifier

	4 Experimental Results and Analysis
	4.1 Experimental Setup
	4.2 snippet2vec based on Different Sets of Meta-path Schemes
	4.3 Comparisons with Different Network Representation Learning Models
	4.4 Comparisons with Traditional Machine Learning Methods
	4.5 Evaluation of Parameter Sensitivity, Scalability, and Stability
	4.6 Case Studies

	5 Related Work
	6 Conclusion
	References

	i12-1-etigowni
	Abstract
	1 Introduction
	2 Background
	2.1 Drone Flight Dynamics
	2.2 Offline Controller Code Verification
	2.3 Limitation of Existing Solutions

	3 Overview
	3.1 Threat Model
	3.2 Crystal Architecture
	3.3 Safety Requirement Definition
	3.4 Predictive Flight Modeling
	3.5 Just-Ahead-of-Time Verification

	4 Drone Physics Modeling
	4.1 Normal Operation Mode Physical Modeling
	4.2 Failure Mode Data-Driven Modeling
	4.3 Full Flight Operation mode

	5 Cyber-Physical Security Modeling
	6 JAT Verification and Recovery
	7 Evaluations
	7.1 Evaluation on 3DR Solo Quadcopter

	8 Related Work
	9 Conclusion
	A Global safety conditions
	B normal Operation Mode Physical Modeling
	Acknowledgments
	References

	i12-2-mujeeb
	i12-3-castellanos
	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Attack points and cyber-to-physical interfaces
	3.2 Attacker profile
	3.3 Modelling a CPS as a Data Flow Graph
	3.4 White-box analysis of controller's source code
	3.5 Extracting graphs from a controller's code
	3.6 Reachability analysis
	3.7 Shortest path analysis and attack diagrams

	4 Implementation
	4.1 The testbed
	4.2 PLC code parser

	5 Evaluation
	5.1 Interactions between attack points and Cy2Phy interfaces
	5.2 Choosing suitable attack points
	5.3 Testing attack points in a real scenario

	6 Discussion
	7 Related work
	8 Conclusions and future work
	References
	A List of components in SWaT
	B Shortest path distance between attack points and Cy2Phy interfaces

	i12-4-schilling
	Abstract
	1 Introduction
	2 State of the Art and Background
	2.1 Threat Model and Attack Vector
	2.2 Error Detection Codes
	2.3 ARM Pointer Authentication

	3 Pointer Protection with Residue Codes
	3.1 Overview
	3.2 Pointer Layout and Residue-Code Selection
	3.3 Pointer Operations

	4 Evolved Memory Access Protection
	4.1 Overview
	4.2 The Linking Approach
	4.3 Memory-Mapped I/O

	5 Architecture
	5.1 New Instructions
	5.2 Hardware
	5.3 Software

	6 Evaluation
	6.1 Future Work

	7 Conclusion
	8 Acknowledgment
	References

	i13-1-wang
	Abstract
	1 Introduction
	2 Motivating Example
	3 System Overview
	4 Design and Implementation
	4.1 Library Call Tracing
	4.2 Lprov Kernel Module
	4.3 Lprov Daemon Process and Log Analysis

	5 Evaluation
	5.1 Performance Overhead
	5.2 Case Study

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Kernel Event Tracing
	A.2 Log Analysis Algorithm
	A.3 Additional Performance Evaluation

	i13-2-deGoer
	Abstract
	1 Introduction
	2 Problem
	2.1 Statement
	2.2 Notations and definitions
	2.3 Scope

	3 Approach
	3.1 Overview
	3.2 Heuristics

	4 Implementation
	4.1 Ground-truth - oracle
	4.2 Naive implementations of call detection
	4.3 Implementation details of iCi

	5 Experiments
	5.1 Methodology
	5.2 Platform
	5.3 General results
	5.4 SPEC CPU2006
	5.5 Influence of the compiler
	5.6 Discussion

	6 Applications
	7 Conclusion
	References

	i13-3-im
	Abstract
	1 Introduction
	2 Background
	2.1 Android security architecture
	2.2 Example: Location services
	2.3 SEAndroid policy rules
	2.4 The complexity of SEAndroid policy

	3 Methodologies
	3.1 The ``box'' metric
	3.2 Git repository analysis
	3.3 Our measurement tool

	4 Measurement Results
	4.1 Boxes vs. rules
	4.2 Number of boxes in a rule
	4.3 Number of rules per box
	4.4 Ratio of rule vs. box changes
	4.5 Summary

	5 An Historical Analysis
	5.1 The ``age'' of rules
	5.2 The increasing policy complexity
	5.3 The effect of multiple branches
	5.4 Case study: Stagefright
	5.5 Contributor comparison

	6 Discussion
	6.1 SEAndroid vs. Smack
	6.2 Android Treble
	6.3 Android for Work

	7 Related work
	8 Conclusion
	9 Acknowledgment
	References

	i13-4-rahman
	Abstract
	1 Introduction
	2 Background
	3 Intent-driven Access Control
	3.1 Threat Model and Assumptions
	3.2 IAC via BCI

	4 Experiment Design
	4.1 Single App Experiment
	4.2 Multiple Apps Experiment
	4.3 Experimental Procedures

	5 Data Process and Analysis
	6 Feasibility Test
	6.1 Single App Analysis
	6.2 Cross-app Portability Analysis
	6.3 Results Analysis
	6.4 Authorization Accuracy

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgment
	References

	i14-1-nikolic
	Abstract
	1 Introduction
	2 Problem
	2.1 Ethereum Smart Contracts
	2.2 Contracts with Trace Vulnerabilities
	2.3 Our Approach

	3 Trace Vulnerabilities
	3.1 EVM Semantics and Traces
	3.2 Safety Violations
	3.3 Liveness Violations

	4 The Algorithm and the Tool
	4.1 Symbolic Analysis
	4.2 Concrete Validation

	5 Evaluation
	5.1 Results
	5.2 Case Studies: True Positives
	5.3 Case Studies: False Positives
	5.4 Summary and Observations

	6 Related Work
	7 Conclusion
	References

	i14-2-torres
	Abstract
	1 Introduction
	2 Background
	2.1 The Ethereum Virtual Machine
	2.2 The Solidity Programming Language
	2.3 Integer Bugs in Ethereum Smart Contracts

	3 Methodology
	3.1 Type Inference
	3.2 Finding Integer Bugs
	3.3 Taint Analysis
	3.4 Identifying Benign Integer Bugs

	4 Osiris
	4.1 Design Overview
	4.2 Implementation

	5 Evaluation
	5.1 Empirical Analysis
	5.2 Detection of Real-World Vulnerabilities

	6 Discussion
	6.1 Causes for Integer Bugs
	6.2 Ways Towards Safe Integer Handling

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Control Flow Graph Example
	B The DAO Hack

	i14-3-greubel
	Abstract
	1 Introduction
	2 Background
	2.1 Tor Bandwidth Measurements
	2.2 Trusted Execution Environments
	2.3 Blockchain and Smart Contracts

	3 System and Adversary Model
	4 Design
	4.1 Entity Communication
	4.2 Relay Registration
	4.3 Bandwidth Measurer Registration
	4.4 Join Measurement Process
	4.5 Bandwidth Measurements
	4.6 Reporting and Aggregating Results
	4.7 Malfunction Detection

	5 Security Analysis
	5.1 Group Compromise
	5.2 Attacks from a malicious Host
	5.3 Attacks from compromised TEEs
	5.4 Attacks on the SC

	6 Implementation
	6.1 Smart Contract
	6.2 Bandwidth Measurement Script
	6.3 Bandwidth Measurement Host

	7 Evaluation
	7.1 Measurement script
	7.2 Smart Contract

	8 Related Work
	9 Conclusion and Future Work
	References
	A Intel SGX Details
	B Tor Speedracer Measurements
	C Smart Contract Implementation
	D Measurement Data

	i14-4-tran
	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Preliminaries
	2.2 Threat Model
	2.3 Scope, Assumptions, and Limitations

	3 Obscuro
	3.1 Solution Overview
	3.2 Obscuro Protocol
	3.3 Indirect Participation Mechanism
	3.4 Detection of Malicious Blockchain Forks
	3.5 Collecting Deposits

	4 Security Analysis
	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation

	6 Discussion
	6.1 Recipient of the Mixing Fees
	6.2 Multiple Obscuro Instances

	7 Related Work
	7.1 Existing Bitcoin Mixer Solutions
	7.2 Privacy Improvements in other Cryptocurrencies
	7.3 TEE for Cryptocurrency Applications

	8 Conclusion
	9 Acknowledgments
	References
	A Structure of the Deposit Transaction

	i15-1-continella
	Abstract
	1 Introduction
	2 Background
	2.1 Amazon S3
	2.2 Threats

	3 Methodology
	3.1 Enumeration & Data Collection
	3.2 Security Analysis

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Enumeration & Data Collection
	4.3 Scanning Results
	4.4 Vulnerable Websites

	5 Mitigation
	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

	i15-2-demoulin
	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Strawman solutions
	2.2 DeDoS solution

	3 DeDoS Design
	3.1 Minimum splittable units
	3.2 Inter-MSU communication
	3.3 Routing tables
	3.4 DeDoS runtime API
	3.5 Support for existing applications

	4 Resource Allocation
	4.1 Machine-local scheduling
	4.2 Initial MSU assignment
	4.3 Cloning and merging

	5 Implementation
	5.1 Overview
	5.2 DeDoS local runtime

	6 Case Studies
	7 Evaluation
	7.1 Overheads
	7.2 Attack mitigation

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

	i16-1-blanchard
	Abstract
	1 Introduction
	2 Method
	2.1 Word choice
	2.2 Protocol
	2.3 Design choices

	3 Demographic information
	3.1 Participant selection
	3.2 Recruitment of volunteers
	3.3 Statistics

	4 Results
	4.1 Word selection
	4.2 Memorization
	4.3 Guessing

	5 Statistical modelling
	5.1 Strategies and entropy
	5.2 Semantic aspects

	6 Limitations
	6.1 Ecological validity
	6.2 Short-term and long-term memory
	6.3 Free choice of words

	7 Discussion
	8 Conclusion
	References

	i16-2-mayer
	Abstract
	1 Introduction
	2 Related Work
	3 Development of the Awareness-Raising Material
	3.1 First Iteration - Based on Literature
	3.2 Second Iteration - Incorporation of Structured Expert Feedback
	3.3 Third Iteration - Visual Elements and Lay-User Feedback

	4 User Study Methodology
	4.1 Hypotheses
	4.2 Procedure
	4.3 Questionnaires
	4.4 Analysis

	5 Results – Pre-Treatment and Post-Treatment Questionnaires
	5.1 Assessment of Scenarios
	5.2 Password Security Ratings
	5.3 Qualitative Results

	6 Results – Retention Questionnaires
	6.1 Assessment of Scenarios
	6.2 Password Security Ratings

	7 Discussion
	7.1 Improvements Derived from the User Study
	7.2 Limitations

	8 Conclusion
	References
	A.1 Introductory Sections
	A.2 Attacks
	A.3 Technologies to Protect User Credentials

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

