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Introduction

Data and computation has become inextricably intertwined with modern society. Yet, the systems, net-
works, and software that form the technological substrate upon which modern society functions is un-
worthy of our trust. New security vulnerabilities are discovered at an ever-increasing rate, outpacing our
ability to remove them or defend against their exploitation. At the same time, we must simultaneously ac-
knowledge that the ability to find all vulnerabilities or prevent their introduction into production systems
currently lies far beyond our grasp. This “trust gap” is a critical problem that will only grow in magnitude
if our current trajectory remains unchanged.

My research focuses on closing this gap. While I have many interests that span a variety of domains, my
research agenda has been guided by a three-fold approach:

(1) anticipating and measuring novel threats,
(2) developing new techniques for discovering vulnerabilities, and
(3) building systems that defend against entire vulnerability classes by design.

By anticipating and measuring security threats, we can proactively defend against emerging attacks on
a data-driven, quantifiable basis rather than relying on a predominantly reactive approach to defending
systems. By developing techniques to discover vulnerabilities that heretofore were invisible, or scaling
our ability to do so, we can more effectively harden systems before they are exposed to attackers. Last but
not least, building on insights drawn from measurement and vulnerability analysis enables the creation
of new systems that are inherently secure against known threats.

Post-tenure, I have been afforded the opportunity to take a step back and contemplate the next phase of
my research career and, in particular, the most pressing security problems I would like to solve. Thus,
while I will summarize and put into context significant examples of the work I have performed to date, I
will also describe several major research directions that I plan to pursue in the next epoch of my career.

Measuring Security

The genesis of many of my research projects lies in measurement: data collection, hypothesis testing, and
knowledge synthesis. In the following, I will discuss my measurement efforts in two areas: web security
and emerging malware.

Web Security

A significant advance in client-side web security was the introduction of Content Security Policy (CSP)
in modern browsers. CSP enables web developers to specify richer security policies than the rigid same-
origin policy that has been the default security policy since the web’s inception. However, despite its
promise anecdotal evidence began to emerge that CSP adoption was far less enthusiastic than anticipated.
In Why is CSP Failing? Trends and Challenges in CSP Adoption [19], my group reported on a long-term,
large-scale study of CSP usage on the open web. We crawled the Alexa Top 1M on a weekly basis for over
a year, and found that CSP was deployed in enforcement mode on only 1% of the Alexa Top 100. Adop-
tion precipitously dropped off at lower Alexa ranks. We also studied why organizations were reluctant to



deploy CSP, or why those that did deploy CSP did so in ineffective ways, and identified several usability
concerns. Some of these concerns, such as the inability to securely include inline script, were addressed
in a subsequent version of CSP. Others, such as the difficulty of defining tight policies for highly dynamic
web sites, remain a significant barrier to CSP adoption to this day as reported by follow-on work from
other research groups.

Web applications often heavily depend on third-party resources that includes hosted JavaScript, inducing
a complicated and sometimes highly dynamic trust graph. In Thou Shalt Not Depend on Me: Analysing the
Use of Outdated JavaScript Libraries on the Web [12], my group examined the implications of this in the
context of outdated JavaScript containing known vulnerabilities. In this study, we crawled 133K popular
web sites from the Alexa rankings, and found that fully 37% of the measurement corpus included at least
one third-party JavaScript library with a known vulnerability. Furthermore, we found that transitive code
inclusions - that is, direct inclusions that in turn perform their own inclusions — as well as ad-tracking
code were more likely to be vulnerable. This work helped to highlight the haphazard manner in which
dependencies are managed in web applications, and helped to encourage more systematic and careful
dependency management frameworks for web applications.

Recently, my group has begun to examine emerging security issues in complex web applications with
distributed caching architectures. In “Cached and Confused: Web Cache Deception in the Wild” [15], we
measured the prevalence of a particular form of cache vulnerability — web cache deception - in which a
fronting cache erroneously caches private user data. If an attacker is able to trick a user into visiting a
URL that results in this data being cached, the attacker can then later access that cache entry, obtaining
the corresponding private data. Our work found that 340 sites within the Alexa Top 5K that used popular
content distribution networks were trivially vulnerable to web cache deception. Furthermore, we strongly
suspect that this number significantly undercounts actual prevalence, since our measurement techniques
were necessarily conservative in order to minimize harm to production sites and real users. This work
highlights that modern web applications are highly complex distributed systems with security-relevant
dependencies that are often not considered. This insight motivates current and future work in my group
in the web and cloud security spaces.

Emerging Malware

A second area of interest when it comes to security measurement is emerging malware. Malware contin-
ues to plague the Internet despite the best efforts and billions of dollars of investment in the software
security industry. One recent example of an emergent trend in malware activity is the rise of ransomware,
or malware that holds computational resources or user data hostage in exchange for payment of a ran-
som. In UNVEIL: A Large-Scale, Automated Approach to Detecting Ransomware [10], my group published
a methodology and system for identifying novel ransomware variants at scale. In particular, we demon-
strated that dynamic analysis using traditional malware sandbox platforms can in fact be an effective
approach for ransomware detection when composed with

(1) environmental manipulation that elicits ransomware behavior from generic malware samples, and
(2) detection heuristics over streams of file system operations tuned towards patterns that encode invari-
ants of ransomware behavior.

Our evaluation demonstrated that UNVEIL was able to efficiently and accurately identify and classify
known ransomware samples. In addition, it was also able to identify a new ransomware family that was
previously unknown to the security community.



Malware is constantly evolving to adapt to defenses and exploit new weaknesses. Online survey scams
was another recent emerging trend in malware that our group considered in Surveylance: Automatically
Detecting Online Survey Scams [9]. Our work was the first to systematically highlight and identify the sur-
vey scam ecosystem. Our detection algorithm was shown to be effective in identifying more than 8K sites
involved in presenting scams, collecting private information, and distributing various forms of malware.

Vulnerability Discovery

A second body of research I have conducted concerns vulnerability discovery. This work can be classified
as belonging to one of two broad categories: mixed static-concolic program analyses and dynamic testing
to identify targeted classes of vulnerabilities.

Static and Concolic Program Analysis

Mobile devices and applications have been an area of interest for my research group over the past ten
years. One observation that became apparent after sustained research into Android malware is that as
attacks move towards higher abstraction layers and away from lower-level attacks such as memory cor-
ruption, they tend to become less general. That is, attacks more often rely on violating application-spe-
cific security properties that are also virtually never formally stated. Without formal statements of these
properties or the intended behavior of the application, it is seemingly impossible to reliably detect such
malware with general techniques.

However, we also observed that subtle Android malware is also often triggered under very specific envi-
ronmental circumstances in order to avoid detection during testing or sandbox analysis. In Towards De-
tecting Logic Bombs in Android Applications 8], we developed a program analysis that combined concolic
execution with static control dependency analysis to identify potential triggers for suspicious security-
relevant behavior. Our evaluation over a large corpus of Google Play Store applications supported the
ability of our prototype, called TriggerScope, to identify both benign and malicious triggered behavior.
This ability was further supported by TriggerScope’s ability to identify triggered behavior in DARPA Red
Team-authored malware as well as real malware samples such as HackingTeam’s RCSAndroid family.

My group’s work on mobile application security later considered unintended information disclosure vul-
nerabilities that can arise in interactions with cloud APIs. In Semi-Automated Discovery of Server-based
Information Oversharing Vulnerabilities in Android Applications [11], we developed a novel program analy-
sis that identifies fields in data objects returned from cloud APIs that are never displayed in mobile ap-
plication user interfaces. These fields represent potential unintended information disclosures; however,
to confirm vulnerabilities and thereby reduce the static analysis’s false positive rate, we then applied a
dynamic testing step. Our evaluation over a large corpus of Android applications demonstrated the ef-
fectiveness of this two-phase mixed static-dynamic analysis by discovering several previously-unknown
oversharing vulnerabilities in eight applications.

Dynamic Testing

A significant portion of my work has involved novel dynamic testing approaches for uncovering classes of
vulnerabilities. In the past, I have applied dynamic testing to a variety of domains, from detecting access
control vulnerabilities in graphical user interfaces [16] down to frameworks for systematically testing
CPUs for exploitable microarchitectural flaws [13]. One particularly influential publication in this area is
LAVA: Large-scale Automated Vulnerability Addition [6], which considers the problem of evaluating vul-
nerability detection tools and techniques that rely in part upon dynamic testing. Evaluations of such tools
have historically suffered from a scarcity of test corpora of sufficient scale and diversity. Building a single



corpus is time-consuming and error-prone. LAVA proposes synthetic bug injection as an alternative for
generating evaluation corpora that ship with both ground truth as well as proofs of vulnerability. LAVA
has become a widely-used standard benchmark in fuzzer evaluations, and I remain interested in further
research to improve synthetic bug generation.

A recent focus of my lab was on algorithmic denial-of-service vulnerabilities, where attackers can craft
malicious inputs to software that induces worst-case behavior and availability failures. In HotFuzz: Discov-
ering Algorithmic Denial-of-Service Vulnerabilities Through Guided Micro-Fuzzing [1], my group proposed
a new dynamic testing technique for exposing algorithmic denial-of-service vulnerabilities located deep
inside Java code. Building in Godefroid’s concept of micro-execution, we propose micro-fuzzing, which
optimistically fuzzes Java methods without having to drive a program’s execution to those methods. To
enable this, we synthesize program environments - e.g., method arguments and global variables — that
represent realistic inputs to these methods as gathered from recorded execution traces. Fuzzing trials are
executed on a specially-modified JVM that records time and memory profiles. Those trials that exceed
baseline time or memory thresholds are then automatically synthesized as whole-program test cases that
are run on a commodity JVM. If the test case reproduces the vulnerability, then the vulnerability is con-
sidered to be confirmed. HotFuzz was evaluated on a large number of real Java libraries as well as the
DARPA STAC test corpus, and found a number of algorithmic complexity vulnerabilities across the entire
test corpus.

Designing Secure Systems

The third broad approach my research embodies is secure systems design that builds on insights drawn
from measurement and vulnerability discovery. In the following, I will focus on significant papers related
to application hardening and user privacy.

Application Hardening

My group’s work on CSP and other web security technologies highlighted that client-side code was be-
coming an increasingly security-relevant component of web applications. In ZigZag: Automatically Hard-
ening Web Applications Against Client-side Validation Vulnerabilities [20], we investigated an instrumen-
tation-based approach to prevent the exploitation of latent vulnerabilities in browser-hosted JavaScript.
This instrumentation encompassed two phases: a learning phase that made use of Daikon invariant infer-
ence on function arguments, and an run-time phase that enforced these invariants in deployed programs.
Our prototype, built on the Closure compiler, was able to achieve this without resorting to annotations or
heavyweight training. Our performance evaluation also demonstrated that ZigZag’s security guarantees
are obtainable for real-world, JavaScript-heavy web applications with modest overhead.

Another research direction that I remain intensely interested in is efficient, low-friction least privilege
application separation. In Trellis: Privilege Separation for Multi-User Applications Made Easy [14], my group
proposed an access control technique for robustly partitioning data in multi-user applications. Trellis
modifies the kernel and system libraries to enforce an access control lattice for sections of code and data
within an application. Applications can then use a special API to partition applications according to the
sensitivity of code and data. A modified LLVM toolchain then converts this partitioning into an efficient
binary representation for enforcement. Our case studies demonstrated that with minimal developer effort,
a Trellis-enabled system can provide strong isolation guarantees between different intra-process privilege
levels with low run-time overhead.



Privacy

The second area of secure systems design I will present here concerns user privacy. One prominent ex-
ample of this research thrust is my work on defending user privacy within the operating system. Many
users clearly care about the privacy of their data and online behaviors, as evidenced by the widespread
proliferation and usage of privacy defenses—e.g., network-based anonymity services such as Tor. On the
client, full-disk encryption (FDE) is commonly provided by the operating system in order to safeguard
user data at rest. This, however, has the drawback that users can be forcibly coerced into divulging secrets
—i.e., FDE passwords—that expose otherwise protected information. Another approach to this problem is
application-specific privacy modes, such as private browsing or incognito mode as found in modern web
browsers such as Chrome, Firefox, and Safari. In this model, users can browse the web with the expecta-
tion that no traces of their browsing session will persist to the system in the form of cache entries, history,
or bookmarks. This privacy model is of interest as it promises that no information about the browsing
session can be recovered from the system through coercion or otherwise. However, research has shown
that application-specific privacy modes are difficult (or impossible) to develop correctly, and there is the
additional drawback that significant effort must be invested to implement privacy modes on a per-appli-
cation basis.

Therefore, my group developed PrivExec [17], a technique for providing a system-wide notion of private
execution to all applications. The technique modifies the system to create two classes of processes: public
processes that operate with traditional semantics, and private processes that are behaviorally restricted
to enforce a forensic standard of user privacy. In particular, private processes—or, more precisely, private
process groups—are confined to a private storage namespace that is an encrypted read-write overlay on
top of the public file system. In addition, the system swap space is partitioned and encrypted on a per-
private process group basis. These encrypted storage spaces are secured by a randomly-generated private
execution key (PEK) that is stored within the kernel and never released to the user. When a private execu-
tion session terminates, the associated PEK is securely erased from memory, implementing cryptographic
erasure of the private session data. The end result is a system where any application can enter a private
execution mode with strong, cryptographically-backed guarantees of data confidentiality, and users can-
not be coerced into revealing data after the fact as they have no knowledge of the corresponding private
execution key. Our prototype implementation for Linux demonstrated that strong private execution could
be achieved in an efficient manner with minimally invasive modifications to the operating system kernel.

My group later considered the related problem of secure deletion of data from non-volatile storage. Stor-
age devices such as SSDs make use of techniques like wear leveling that involve hidden replication of
data, which lies in direct opposition to efforts to securely delete data from storage. In ERASER: Your Data
Won’t Be Back [18], we again built on cryptographic erasure to transparently encrypt files on an insecure
medium with a file-specific key. Under this system, erasure is accomplished not by deleting the data but
rather securely discarding the key. In order to render the approach tractable, keys are organized in an
efficient tree structure where a single master root key is confined to a secure store that is unlocked at
boot by the user. Our prototype implementation demonstrated that this approach can be achieved with
overhead comparable to popular full disk encryption implementations.

Current and Future Work

My work to date has considered a broad range of security issues and domains. Post-tenure, I have decided
to more tightly focus my efforts on several security problems I consider of particular importance. In the
following, I will briefly describe these research directions.



Scaling Program Testing

Fuzz testing has become the predominant method by which new vulnerabilities are discovered. Large-
scale efforts such as Google’s ClusterFuzz, OSS-Fuzz, and FuzzBench are have shown that fuzzing can
be highly effective for preemptively discovering and removing vulnerabilities before they are exposed to
adversarial input. However, despite intense interest from the academic and industrial security communi-
ties, grey-box mutational fuzzing remains fundamentally limited by its inability achieve anything even
approaching 100% code coverage. Recent research, including our own work which involved close to 1M
CPU-hours of fuzz testing [5], has demonstrated that the current state-of-the-art quickly saturates paths
that are easy to cover but inevitably fails to make progress in covering the remainder of the program.
In fact, there is readily apparent transition over time from linear to exponential difficulty in covering
new code.

The research questions I want to answer in this area center around understanding and breaking through
this “coverage wall” In particular, my current work focuses on understanding why some paths are more
difficult to cover than others by recording and characterizing path constraints. Given a general predic-
tive model for path coverage difficulty, we can potentially better design mutation and seed scheduling
algorithms to balance between the opposing optimization objectives of breadth versus depth and thereby
substantially improve program defect discovery rates.

Rehosting Embedded Systems

A second area of interest is embedded systems, which encompasses a wide range of computational devices
across the Internet of Things and industrial control systems. Due to several factors, embedded systems are
considered to contain more vulnerabilities than traditional systems. However, due to resource constraints
it is generally infeasible to apply state-of-the-art vulnerability discovery tools and techniques on embed-
ded systems. In response, there is great interest in transplanting, or rehosting, firmware extracted from
embedded systems into analysis environments with sufficient resources and introspection capabilities to
carry out security analyses such as fuzzing campaigns.

However, while rehosting is enticing, several fundamental challenges remain unsolved. A well-known ex-
ample is the lack of peripheral hardware models, which is greatly exacerbated by the enormous diversity
of SoCs and associated custom hardware available in the embedded market. Aside from this, rehosting
is currently an intensely manual process that requires extensive specialized expertise to carry out what
we term the rehosting loop: the process of booting a rehosted system, debugging failures, identifying the
root cause of errors, and modifying the rehosting environment to correct or avoid those errors [7]. My
current research in this area lies first in automatically synthesizing usable models of underspecified pe-
ripheral hardware from recorded execution traces, and second in accelerating the rehosting loop through
whole-system slicing to scope rehosting efforts, define fidelity metrics and success states, and automati-
cally identify and avoid error states.

Software Hardening

The third major area of interest I will discuss is software hardening. This effort builds on my group’s past
work [14], with the goal of devising novel targeted hardware security primitives that can be leveraged
by operating system, run-time loader, and compiler toolchain features to provide strong security guar-
antees for next-generation software. As one example of work in progress, we are building on memory
protection key enhancements to RISC-V to enable fine-grain confinement of third-party code. Through
enhancements to Clang and LLVM, we are able to easily define intra-process protection domains and



least-privilege policies for third-party code that are enforced at run-time via novel OS security features
backed by hardware guarantees. This work is aimed squarely at defending against software supply chain
vulnerabilities, preventing exfiltration of sensitive data or attacks on computational integrity via trust-
worthy software partitioning.

To validate this approach, my group has in parallel investigated incarnations of these software hardening
techniques within the limitations of existing primitives. One line of work has focused on Intel Memory
Protection Keys (MPK), alternatively known as Protection Keys for Userspace (PKU). MPK is a security
extension to the Intel ISA that allows developers to partition an address space into distinct page-granu-
larity domains tagged with one of 16 keys. MPK designates bits 59-62 of each page table entry (PTE)
as that page’s protection key. Thus, MPK is a form of tagged memory, a venerable architectural security
approach that dates back to 1960s-era LISP machines and Burroughs mainframes. MPK additionally adds
a protection key rights register for user pages (PKRU) to each CPU thread. At every memory access, the
MMU checks whether the corresponding PTE’s protection key is present in the current thread’s PKRU
register — either reading or writing can be separately permitted. If so, the access is allowed and execution
continues; otherwise, a hardware exception is raised. The PKRU can be updated using a special instruc-
tion (wrpkru), making domain switches relatively efficient. Also, since the MMU enforces access policies,
domain checks are also efficient, incurring essentially zero overhead.

MPKAlloc [2] builds on MPK to isolate allocator metadata from the rest of a program, effectively parti-
tioning a program into a trusted allocator and an untrusted, potentially vulnerable, program. The key
invariant MPKAlloc preserves is that any access made to allocator metadata must originate from a trusted
domain, and the trusted domain only contains allocator code. By default, all CPU threads execute within
an untrusted domain. Upon any allocator invocation - e.g., to allocate or free a heap chunk - MPKAlloc
switches the thread to the privileged domain to enable metadata access. Once the requested allocator
operation is performed, the CPU thread’s rights are restored to the unprivileged domain.

An implicit requirement of MPKAlloc is that the allocator must place metadata and user data on separate
memory pages. So, while glibc’s ptmalloc is an important allocator to protect, its design decision to place
metadata inline with user memory chunks precludes straightforward use of MPK for mitigation. However,
several other popular allocators do in fact satisfy this requirement, including tcmalloc and PartitionAlloc,
which are both used by Chromium and, thus, are heavily targeted by attackers. tcmalloc tracks spans,
or user allocations at page granularity, using a trie held by MetaDataAllocator objects located on separate
memory pages. PartitionAlloc instead uses a super page structure for similar purposes that is also stored
in dedicated memory pages. Thus, critical metadata that is targeted by Chrome heap exploits can easily be
protected by MPK and MPKAlloc by placing that metadata on pages labeled with a distinct protection key.

ThreadLock [3] similarly builds on MPK to efficiently enforce principal isolation at the thread level.

Neural Program Analysis

The final research area my group is currently focusing on exploring neural program analyses for secu-
rity. As a first step, we have examined the efficacy and limitations of deep neural networks as applied
to fundamental binary analysis tasks such as disassembly and function boundary recognition [4]. In this
work, we demonstrate a number of concrete techniques for introducing unacceptably high misclassifica-
tion rates in two recent examples of neural disassembly and function boundary recognition models. Our
evaluation demonstrates that attackers would be able to easily evade defensive analysis pipelines built
on these models. We conclude that a straightforward application of even state-of-the-art model architec-
tures, e.g., BERT-based Transformers, ignores crucial domain-specific semantic information that in turn



will leave the door open for attackers to elude detection by such models. Using insights from this work,

my group is currently developing novel model embeddings and architectures that close this gap in order
to realize the scalability and powerful inference capabilities that neural techniques promise to bring to

program analysis.
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